SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ajello M.) srt2:(2015-2019)"

Search: WFRF:(Ajello M.) > (2015-2019)

  • Result 11-20 of 46
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Ajello, M., et al. (author)
  • 3FHL : The Third Catalog of Hard Fermi-LAT Sources
  • 2017
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 232:2
  • Journal article (peer-reviewed)abstract
    • We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi-LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV-2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift (z > 2). Of the sources, 8% have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5 x 10(-11) ph cm(-2) s(-1), respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new gamma-ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of 10(-12) erg cm(-2) s(-1), the energy range above 10 GeV has twice as many sources as the range above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.
  •  
12.
  • Ajello, M., et al. (author)
  • A Decade of Gamma-Ray Bursts Observed by Fermi-LAT : The Second GRB Catalog
  • 2019
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 878:1
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope (LAT) aboard the Fermi spacecraft routinely observes high-energy emission from gamma-ray bursts (GRBs). Here we present the second catalog of LAT-detected GRBs, covering the first 10 yr of operations, from 2008 to 2018 August 4. A total of 186 GRBs are found; of these, 91 show emission in the range 30-100 MeV (17 of which are seen only in this band) and 169 are detected above 100 MeV. Most of these sources were discovered by other instruments (Fermi/GBM, Swift/BAT, AGILE, INTEGRAL) or reported by the Interplanetary Network (IPN); the LAT has independently triggered on four GRBs. This catalog presents the results for all 186 GRBs. We study onset, duration, and temporal properties of each GRB, as well as spectral characteristics in the 100 MeV-100 GeV energy range. Particular attention is given to the photons with the highest energy. Compared with the first LAT GRB catalog, our rate of detection is significantly improved. The results generally confirm the main findings of the first catalog: the LAT primarily detects the brightest GBM bursts, and the high-energy emission shows delayed onset as well as longer duration. However, in this work we find delays exceeding 1 ks and several GRBs with durations over 10 ks. Furthermore, the larger number of LAT detections shows that these GRBs not only cover the high-fluence range of GBM-detected GRBs but also sample lower fluences. In addition, the greater number of detected GRBs with redshift estimates allows us to study their properties in both the observer and rest frames. Comparison of the observational results with theoretical predictions reveals that no model is currently able to explain all results, highlighting the role of LAT observations in driving theoretical models.
  •  
13.
  • Abdo, A. A., et al. (author)
  • Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:2
  • Journal article (peer-reviewed)abstract
    • The Large Area Telescope ( LAT) on board the FermiGamma- ray Space Telescope routinely detects the MeV- peaked flat- spectrum radio quasar PKS 1830- 211 ( z = 2.507). Its apparent isotropic. - ray luminosity ( E > 100 MeV), averaged over 3 years of observations and peaking on 2010 October 14/ 15 at 2.9 x 1050 erg s- 1, makes it among the brightest high- redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time- delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large. - ray flares of PKS 1830- 211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the. - ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X- ray flux with the. - ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and. - ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy- dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.
  •  
14.
  • Ackermann, M., et al. (author)
  • The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope
  • 2018
  • In: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 237:2, s. 32-
  • Journal article (peer-reviewed)abstract
    • We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.
  •  
15.
  • Ackermann, M., et al. (author)
  • The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 799:1, s. 86-
  • Journal article (peer-reviewed)abstract
    • The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 +/- 0.02 and a break energy of (279 +/- 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 +/- 0.6) x 10(-6) cm(-2) s(-1) sr(-1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.
  •  
16.
  • Ajello, M., et al. (author)
  • Fermi-LAT Observations of LIGO/Virgo Event GW170817
  • 2018
  • In: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 861:2
  • Journal article (peer-reviewed)abstract
    • We present the Fermi Large Area Telescope (LAT) observations of the binary neutron star merger event GW170817 and the associated short gamma-ray burst (SGRB) GRB 170817A detected by the Fermi Gamma-ray Burst Monitor. The LAT was entering the South Atlantic Anomaly at the time of the LIGO/Virgo trigger (t(GW)) and therefore cannot place constraints on the existence of high-energy (E > 100 MeV) emission associated with the moment of binary coalescence. We focus instead on constraining high-energy emission on longer timescales. No candidate electromagnetic counterpart was detected by the LAT on timescales of minutes, hours, or days after the LIGO/Virgo detection. The resulting flux upper bound (at 95% C. L.) from the LAT is 4.5. x. 10(-10) erg cm(-2) s(-1) in the 0.1-1 GeV range covering a period from tGW. +. 1153 s to t(GW). +. 2027 s. At the distance of GRB 170817A, this flux upper bound corresponds to a luminosity upper bound of 9.7. x. 10(43) erg s(-1), which is five orders of magnitude less luminous than the only other LAT SGRB with known redshift, GRB 090510. We also discuss the prospects for LAT detection of electromagnetic counterparts to future gravitational-wave events from Advanced LIGO/Virgo in the context of GW170817/GRB 170817A.
  •  
17.
  • Abdollahi, S., et al. (author)
  • The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis
  • 2017
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 846:1
  • Journal article (peer-reviewed)abstract
    • We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1-0.8 GeV and 0.8-300 GeV, a total of 4547 flares were detected with significance greater than 6s (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p similar to 2.
  •  
18.
  • Acero, F., et al. (author)
  • DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA
  • 2016
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 223:2
  • Journal article (peer-reviewed)abstract
    • Most of the celestial. rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop. I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20 degrees and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within similar to 4 degrees of the Galactic Center.
  •  
19.
  • Ackermann, M., et al. (author)
  • FERMI LARGE AREA TELESCOPE DETECTION OF EXTENDED GAMMA-RAY EMISSION FROM THE RADIO GALAXY FORNAX A
  • 2016
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 826:1
  • Journal article (peer-reviewed)abstract
    • We report the Fermi Large Area Telescope detection of extended gamma-ray emission from the lobes of the radio galaxy Fornax. A using 6.1 years of Pass. 8 data. After Centaurus. A, this is now the second example of an extended gamma-ray source attributed to a radio galaxy. Both an extended flat disk morphology and a morphology following the extended radio lobes were preferred over a point-source description, and the core contribution was constrained to be < 14% of the total gamma-ray flux. A preferred alignment of the gamma-ray elongation with the radio lobes was demonstrated by rotating the radio lobes template. We found no significant evidence for variability on similar to 0.5 year timescales. Taken together, these results strongly suggest a lobe origin for the gamma-rays. With the extended nature of the > 100 MeV gamma-ray emission established, we model the source broadband emission considering currently available total lobe radio and millimeter flux measurements, as well as X-ray detections attributed to inverse Compton (IC) emission off the cosmic microwave background (CMB). Unlike the Centaurus. A case, we find that a leptonic model involving IC scattering of CMB and extragalactic background light (EBL) photons underpredicts the gamma-ray fluxes by factors of about similar to 2-3, depending on the EBL model adopted. An additional gamma-ray spectral component is thus required, and could be due to hadronic emission arising from proton-proton collisions of cosmic rays with thermal plasma within the radio lobes.
  •  
20.
  • Ackermann, M., et al. (author)
  • Limits on dark matter annihilation signals from the Fermi LAT 4-year measurement of the isotropic gamma-ray background
  • 2015
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :9
  • Journal article (peer-reviewed)abstract
    • We search for evidence of dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) measured with 50 months of Fermi Large Area Telescope (LAT) observations. An improved theoretical description of the cosmological DM annihilation signal, based on two complementary techniques and assuming generic weakly interacting massive particle (WIMP) properties, renders more precise predictions compared to previous work. More specifically, we estimate the cosmologically-induced gamma-ray intensity to have an uncertainty of a factor similar to 20 in canonical setups. We consistently include both the Galactic and extragalactic signals under the same theoretical framework, and study the impact of the former on the IGRB spectrum derivation. We find no evidence for a DM signal and we set limits on the DM-induced isotropic gamma-ray signal. Our limits are competitive for DM particle masses up to tens of TeV and, indeed, are the strongest limits derived from Fermi LAT data at TeV energies. This is possible thanks to the new Fermi LAT IGRB measurement, which now extends up to an energy of 820 GeV. We quantify uncertainties in detail and show the potential this type of search offers for testing the WIMP paradigm with a complementary and truly cosmological probe of DM particle signals.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 46

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view