SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Altshuler David) srt2:(2005-2009)"

Sökning: WFRF:(Altshuler David) > (2005-2009)

  • Resultat 11-20 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Choquet, Helene, et al. (författare)
  • The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: an updated meta-analysis in 49 279 subjects
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:13, s. 2495-2501
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent study reported an association between the brain natriuretic peptide (BNP) promoter T-381C polymorphism (rs198389) and protection against type 2 diabetes (T2D). As replication in several studies is mandatory to confirm genetic results, we analyzed the T-381C polymorphism in seven independent case-control cohorts and in 291 T2D-enriched pedigrees totalling 39 557 subjects of European origin. A meta-analysis of the seven case-control studies (n = 39 040) showed a nominal protective effect [odds ratio (OR) = 0.86 (0.79-0.94), P = 0.0006] of the CC genotype on T2D risk, consistent with the previous study. By combining all available data (n = 49 279), we further confirmed a modest contribution of the BNP T-381C polymorphism for protection against T2D [OR = 0.86 (0.80-0.92), P = 1.4 x 10(-5)]. Potential confounders such as gender, age, obesity status or family history were tested in 4335 T2D and 4179 normoglycemic subjects and they had no influence on T2D risk. This study provides further evidence of a modest contribution of the BNP T-381C polymorphism in protection against T2D and illustrates the difficulty of unambiguously proving modest-sized associations even with large sample sizes.
  •  
12.
  • Florez, Jose C, et al. (författare)
  • Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:2, s. 531-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The common polymorphisms KCNJ11 E23K and ABCC8 A1369S have been consistently associated with type 2 diabetes. We examined whether these variants are also associated with progression from impaired glucose tolerance (IGT) to diabetes and responses to preventive interventions in the Diabetes Prevention Program. We genotyped both variants in 3,534 participants and performed Cox regression analysis using genotype, intervention, and their interactions as predictors of diabetes incidence over ∼3 years. We also assessed the effect of genotype on insulin secretion and insulin sensitivity at 1 year. As previously shown in other studies, lysine carriers at KCNJ11 E23K had reduced insulin secretion at baseline; however, they were less likely to develop diabetes than E/E homozygotes. Lysine carriers were less protected by 1-year metformin treatment than E/E homozygotes (P < 0.02). Results for ABCC8 A1369S were essentially identical to those for KCNJ11 E23K. We conclude that the lysine variant in KCNJ11 E23K leads to diminished insulin secretion in individuals with IGT. Given our contrasting results compared with case-control analyses, we hypothesize that its effect on diabetes risk may occur before the IGT-to-diabetes transition. We further hypothesize that the diabetes-preventive effect of metformin may interact with the impact of these variants on insulin regulation.
  •  
13.
  • Kathiresan, Sekar, et al. (författare)
  • Common variants at 30 loci contribute to polygenic dyslipidemia
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 56-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 x 10(-8)), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10(-15) for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
  •  
14.
  • Prokopenko, Inga, et al. (författare)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
15.
  • de Bakker, Paul I. W., et al. (författare)
  • Transferability of tag SNPs in genetic association studies in multiple populations
  • 2006
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 38:11, s. 1298-1303
  • Tidskriftsartikel (refereegranskat)abstract
    • A general question for linkage disequilibrium-based association studies is how power to detect an association is compromised when tag SNPs are chosen from data in one population sample and then deployed in another sample. Specifically, it is important to know how well tags picked from the HapMap DNA samples capture the variation in other samples. To address this, we collected dense data uniformly across the four HapMap population samples and eleven other population samples. We picked tag SNPs using genotype data we collected in the HapMap samples and then evaluated the effective coverage of these tags in comparison to the entire set of common variants observed in the other samples. We simulated case-control association studies in the non-HapMap samples under a disease model of modest risk, and we observed little loss in power. These results demonstrate that the HapMap DNA samples can be used to select tags for genome-wide association studies in many samples around the world.
  •  
16.
  • Florez, Jose C., et al. (författare)
  • The Kruppel-like factor 11 (KLF11) Q62R polymorphism is not associated with type 2 diabetes in 8,676 people
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:12, s. 3620-3624
  • Tidskriftsartikel (refereegranskat)abstract
    • Kruppel-like factor 11 is a pancreatic transcription factor whose activity induces the insulin gene. A common glutamine-to-arginine change at codon 62 (Q62R) in its gene KLF11 has been recently associated with type 2 diabetes in two independent samples. Q62R and two other rare missense variants (A347S and T220M) were also shown to affect the function of KLF11 in vitro, and insulin levels were lower in carriers of the minor allele at Q62R. We therefore examined their impact on common type 2 diabetes in several family-based and case-control samples of northern-European ancestry, totaling 8,676 individuals. We did not detect the rare A347S and T220M variants in our samples. With respect to Q62R, despite > 99% power to detect an association of the previously published magnitude, Q62R was not associated with type 2 diabetes (pooled odds ratio 0.97 [95% Cl 0.88-1.08], P = 0.63). In a subset of normoglycemic individuals, we did not observe significant differences in various insulin traits according to genotype at KLF11 Q62R. We conclude that the KLF11 A347S and T220M mutations do not contribute to increased risk of diabetes in European-derived populations and that the Q62R polymorphism has, at best, a minor effect on diabetes risk.
  •  
17.
  • Graham, R. Robert, et al. (författare)
  • Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:16, s. 6758-6763
  • Tidskriftsartikel (refereegranskat)abstract
    • Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3' UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.
  •  
18.
  • Kathiresan, Sekar, et al. (författare)
  • Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans.
  • 2008
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 40:2, s. 189-97
  • Tidskriftsartikel (refereegranskat)abstract
    • Blood concentrations of lipoproteins and lipids are heritable risk factors for cardiovascular disease. Using genome-wide association data from three studies (n = 8,816 that included 2,758 individuals from the Diabetes Genetics Initiative specific to the current paper as well as 1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables reported in a companion paper in this issue) and targeted replication association analyses in up to 18,554 independent participants, we show that common SNPs at 18 loci are reproducibly associated with concentrations of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, and/or triglycerides. Six of these loci are new (P < 5 x 10(-8) for each new locus). Of the six newly identified chromosomal regions, two were associated with LDL cholesterol (1p13 near CELSR2, PSRC1 and SORT1 and 19p13 near CILP2 and PBX4), one with HDL cholesterol (1q42 in GALNT2) and five with triglycerides (7q11 near TBL2 and MLXIPL, 8q24 near TRIB1, 1q42 in GALNT2, 19p13 near CILP2 and PBX4 and 1p31 near ANGPTL3). At 1p13, the LDL-associated SNP was also strongly correlated with CELSR2, PSRC1, and SORT1 transcript levels in human liver, and a proxy for this SNP was recently shown to affect risk for coronary artery disease. Understanding the molecular, cellular and clinical consequences of the newly identified loci may inform therapy and clinical care.
  •  
19.
  • Lyon, Helen N., et al. (författare)
  • Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:11, s. 3180-3184
  • Tidskriftsartikel (refereegranskat)abstract
    • The common missense single nucleotide polymorphism (SNP) K121Q in the ectoenzyme nucleotide pyrophosphate phosphodiesterase (ENPP1) gene has recently been associated with type 2 diabetes in Italian, U.S., and South-Asian populations. A three-SNP haplotype, including K121Q, has also been associated with obesity and type 2 diabetes in French and Austrian populations. We set out to confirm these findings in several large samples. We genotyped the haplotype K121Q (rs1044498), rs1799774, and rs7754561 in 8,676 individuals of European ancestry with and without type 2 diabetes, in 1,900 obese and 930 lean individuals of European ancestry from the U.S. and Poland, and in 1,101 African-American individuals. Neither the K121Q missense polymorphism nor the putative risk haplotype were significantly associated with type 2 diabetes or BMI. Two SNPs showed suggestive evidence of association in a meta-analysis of our European ancestry samples. These SNPs were rs7754561 with type 2 diabetes 0.85 [95% CI 0.78-0.92], P = 0.00003) and rs1799774 with BMI (homozygotes of the delT-allele, 0.6 [0.42-0.88], P = 0.007). However, these findings are not supported by other studies. We did not observe a reproducible association between these three ENPP1 variants and BMI or type 2 diabetes.
  •  
20.
  • Lyssenko, Valeriya, et al. (författare)
  • Clinical risk factors, DNA variants, and the development of type 2 diabetes.
  • 2008
  • Ingår i: New England Journal of Medicine. - 0028-4793. ; 359:21, s. 2220-2232
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Type 2 diabetes mellitus is thought to develop from an interaction between environmental and genetic factors. We examined whether clinical or genetic factors or both could predict progression to diabetes in two prospective cohorts. METHODS: We genotyped 16 single-nucleotide polymorphisms (SNPs) and examined clinical factors in 16,061 Swedish and 2770 Finnish subjects. Type 2 diabetes developed in 2201 (11.7%) of these subjects during a median follow-up period of 23.5 years. We also studied the effect of genetic variants on changes in insulin secretion and action over time. RESULTS: Strong predictors of diabetes were a family history of the disease, an increased body-mass index, elevated liver-enzyme levels, current smoking status, and reduced measures of insulin secretion and action. Variants in 11 genes (TCF7L2, PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX) were significantly associated with the risk of type 2 diabetes independently of clinical risk factors; variants in 8 of these genes were associated with impaired beta-cell function. The addition of specific genetic information to clinical factors slightly improved the prediction of future diabetes, with a slight increase in the area under the receiver-operating-characteristic curve from 0.74 to 0.75; however, the magnitude of the increase was significant (P=1.0x10(-4)). The discriminative power of genetic risk factors improved with an increasing duration of follow-up, whereas that of clinical risk factors decreased. CONCLUSIONS: As compared with clinical risk factors alone, common genetic variants associated with the risk of diabetes had a small effect on the ability to predict the future development of type 2 diabetes. The value of genetic factors increased with an increasing duration of follow-up.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy