SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Benedet Andrea L) "

Sökning: WFRF:(Benedet Andrea L)

  • Resultat 11-20 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ashton, Nicholas J., et al. (författare)
  • A multicentre validation study of the diagnostic value of plasma neurofilament light
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.
  •  
12.
  • Mila-Aloma, M., et al. (författare)
  • Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer's disease
  • 2022
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 28, s. 1797-1801
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive comparison of Alzheimer's disease blood biomarkers in cognitively unimpaired individuals reveals that plasma p-tau231 and p-tau217 capture very early A beta changes, showing promise as markers to enrich a preclinical population for Alzheimer's disease clinical trials Blood biomarkers indicating elevated amyloid-beta (A beta) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient A beta pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and A beta 42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest A beta burden. Plasma p-tau231 and p-tau217 had the strongest association with A beta positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in A beta PET uptake in individuals without overt A beta pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral A beta changes, before overt A beta plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials.
  •  
13.
  • Tissot, C., et al. (författare)
  • Comparing tau status determined via plasma pTau181, pTau231 and [18F]MK6240 tau-PET
  • 2022
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 76
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Tau in Alzheimer's disease (AD) is assessed via cerebrospinal fluid (CSF) and Positron emission tomography (PET). Novel methods to detect phosphorylated tau (pTau) in blood have been recently developed. We aim to investigate agreement of tau status as determined by [18F]MK6240 tau-PET, plasma pTau181 and pTau231. Methods: We assessed cognitively unimpaired young, cognitively unimpaired, mild cognitive impairment and AD individuals with [18F]MK6240, plasma pTau181, pTau 231, [18F]AZD4694 amyloid-PET and MRI. A subset underwent CSF assessment. We conducted ROC curves to obtain cut-off values for plasma pTau epitopes. Individuals were categorized as positive or negative in all biomarkers. We then compared the distribution among concordant and discordant groups in relation to diagnosis, Aβ status, APOEε4 status, [18F]AZD4694 global SUVR, hippocampal volume and CSF pTau181. Findings: The threshold for positivity was 15.085 pg/mL for plasma pTau181 and 17.652 pg/mL for plasma pTau231. Most individuals had concordant statuses, however, 18% of plasma181/PET, 26% of plasma231/PET and 25% of the pTau231/pTau181 were discordant. Positivity to at least one biomarker was often accompanied by diagnosis of cognitive impairment, Aβ positivity, APOEε4 carriership, higher levels of [18F]AZD4694 global SUVR, hippocampal atrophy and CSF pTau181. Interpretation: Plasma pTau181, pTau231 and [18F]MK6240 seem to reflect different stages of tau progression. Plasma biomarkers can be useful in the context of diagnostic information and clinical trials, to evaluate the disease stage. Moreover, they seem to confidently evaluate tau-PET positivity. Funding: Moreover, this study was supported by Weston Brain Institute, Canadian Institute of Health Research and Fonds de Recherche du Québec. © 2022 The Authors
  •  
14.
  • Ashton, Nicholas J., et al. (författare)
  • Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:5, s. 1913-1924
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. Methods In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (A beta 42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF A beta 42/p-tau ratio. Results All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF A beta 42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). Discussion Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. Highlights Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts.
  •  
15.
  • Benedet, Andréa L., et al. (författare)
  • Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals
  • 2019
  • Ingår i: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. - : Wiley. - 2352-8729. ; 11, s. 679-689
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Methods: Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Results: Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. Discussion: These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects.
  •  
16.
  • De Bastiani, Marco Antônio, et al. (författare)
  • Hippocampal GFAP-positive astrocyte responses to amyloid and tau pathologies.
  • 2023
  • Ingår i: Brain, behavior, and immunity. - : Elsevier BV. - 1090-2139 .- 0889-1591. ; 110, s. 175-184
  • Tidskriftsartikel (refereegranskat)abstract
    • In Alzheimer's disease clinical research, glial fibrillary acidic protein (GFAP) released/leaked into the cerebrospinal fluid and blood is widely measured and perceived as a biomarker of reactive astrogliosis. However, it was demonstrated that GFAP levels differ in individuals presenting with amyloid-β (Aβ) or tau pathologies. The molecular underpinnings behind this specificity are little explored. Here we investigated biomarker and transcriptomic associations of hippocampal GFAP-positive astrocytes with Aβ and tau pathologies in humans and mouse models.We studied 90 individuals with plasma GFAP, Aβ- and Tau-PET to investigate the association between biomarkers. Then, transcriptomic analysis in hippocampal GFAP-positive astrocytes isolated from mouse models presenting Aβ (PS2APP) or tau (P301S) pathologies was conducted to explore differentially expressed genes (DEGs), Gene Ontology terms, and protein-protein interaction networks associated with each phenotype.In humans, we found that plasma GFAP associates with Aβ but not tau pathology. Unveiling the unique nature of hippocampal GFAP-positive astrocytic responses to Aβ or tau pathologies, mouse transcriptomics showed scarce overlap of DEGs between the Aβ. and tau mouse models. While Aβ GFAP-positive astrocytes were overrepresented with DEGs associated with proteostasis and exocytosis-related processes, tau hippocampal GFAP-positive astrocytes presented greater abnormalities in functions related to DNA/RNA processing and cytoskeleton dynamics.Our results offer insights into Aβ- and tau-driven specific signatures in hippocampal GFAP-positive astrocytes. Characterizing how different underlying pathologies distinctly influence astrocyte responses is critical for the biological interpretation of astrocyte biomarkers and suggests the need to develop context-specific astrocyte targets to study AD.This study was supported by Instituto Serrapilheira, Alzheimer's Association, CAPES, CNPq and FAPERGS.
  •  
17.
  • Ferrari-Souza, Joao Pedro, et al. (författare)
  • Vascular risk burden is a key player in the early progression of Alzheimer's disease
  • 2024
  • Ingår i: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 88-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-beta 1-42 (A beta 1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF A beta 1-42or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.
  •  
18.
  • Ferreira, Pamela C. L., et al. (författare)
  • Endocannabinoid System Biomarkers in Alzheimer's Disease
  • 2023
  • Ingår i: CANNABIS AND CANNABINOID RESEARCH. - : Mary Ann Liebert Inc. - 2578-5125 .- 2378-8763. ; 8:1, s. 77-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Alterations in the endocannabinoid system (ES) have been described in Alzheimer's disease (AD) pathophysiology. In the past years, multiple ES biomarkers have been developed, promising to advance our understanding of ES changes in AD.Discussion: ES biomarkers, including positron emission tomography with cannabinoid receptors tracers and biofluid-based endocannabinoids, are associated with AD disease progression and pathological features.Conclusion: Although not specific enough for AD diagnosis, ES biomarkers hold promise for prognosis, drug-target engagement, and a better understanding of the disease. Here, we summarize currently available ES biomarker findings and discuss their potential applications in the AD research field.
  •  
19.
  • Karikari, Thomas, et al. (författare)
  • Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26, s. 429-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
  •  
20.
  • Lantero Rodriguez, Juan, et al. (författare)
  • P-tau235: a novel biomarker for staging preclinical Alzheimer's disease.
  • 2021
  • Ingår i: EMBO molecular medicine. - : EMBO. - 1757-4684 .- 1757-4676. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy