SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björnstedt M) "

Sökning: WFRF:(Björnstedt M)

  • Resultat 11-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Madeja, Zbigniew, et al. (författare)
  • The role of thioredoxin reductase activity in selenium-induced cytotoxicity
  • 2005
  • Ingår i: Biochemical Pharmacology. - : Elsevier. - 0006-2952 .- 1356-1839. ; 69:12, s. 1765-1772
  • Tidskriftsartikel (refereegranskat)abstract
    • The selenoprotein thioredoxin reductase is a key enzyme in selenium metabolism, reducing selenium compounds and thereby providing selenide to synthesis of all selenoproteins. We evaluated the importance of active TrxR1 in selenium-induced cytotoxicity using transfected TrxR1 over-expressing stable Human Embryo Kidney (HEK-293) cells and modulation of activity by pretreatment with low concentration of selenite. Treatment with sodium selenite induced cytotoxity in a dose-dependent manner in both TrxR1 over-expressing and control cells. However, TrxR1 over-expressing cells, which were preincubated for 72h with 0.1 microM selenite, were significantly more resistant to selenite cytotoxicity than control cells. To demonstrate the early effects of selenite on behaviour of HEK-293 cells, we also investigated the influence of this compound on cell motility. We observed inhibition of cell motility by 50 microM selenite immediately after administration. Moreover, TrxR1 over-expressing cells preincubated with a low concentration of selenite were more resistant to the inhibitory effect of 50 microM selenite than those not preincubated. It was also observed that the TrxR over-expressing cells showed higher TrxR1 activity than control cells and the preincubation of over-expressing cells with 0.1 microM selenite induced further significant increase in the activity of TrxR1. On the other hand, we demonstrated that TrxR1 over-expressing cells showed decreased glutathione peroxidase activity compared to control cells. These data strongly suggest that TrxR1 may be a crucial enzyme responsible for cell resistance against selenium cytotoxicity.
  •  
13.
  • Nalvarte, Ivan, et al. (författare)
  • Overexpression of enzymatically active human cytosolic and mitochondrial thioredoxin reductase in HEK-293 cells : Effect on cell growth and differentiation
  • 2004
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 279:52, s. 54510-54517
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.
  •  
14.
  • Nordman, Tomas, et al. (författare)
  • Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase
  • 2003
  • Ingår i: Biofactors. - : IOS Press. - 0951-6433 .- 1872-8081. ; 18:1-4, s. 45-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Ubiquinol is a powerful antioxidant, which is oxidized in action and needs to be replaced or regenerated to be capable of a sustained effort. This article summarises current knowledge of extramitochondrial reduction of ubiquinone by three flavoenzymes, i.e. lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase, belonging to the same pyridine nucleotide-disulfide oxidoreductase family. These three enzymes are the most efficient extramitochondrial ubiquinone reductases so far described. The reduction of ubiquinone by lipoamide dehydrogenase and glutathione reductase is potently stimulated by zinc and the highest rate of reduction is achieved at acidic pH and the rates are equal with either NADPH or NADH as co-factors. The most efficient ubiquinone reductases are mammalian cytosolic thioredoxin reductases, which are selenoenzymes with a number of biological functions. Reduction of ubiquinone by thioredoxin reductase is in contrast to the other two enzymes investigated, inhibited by zinc and shows a sharp physiological pH optimum at pH 7.5. Furthermore, the reaction is selenium dependent as revealed from experiments using truncated and mutant forms of the enzyme and also in a cellular context by selenium treatment of transfected thioredoxin reductase overexpressing stable cell lines. The reduction of ubiquinone by the three enzymes offers a multifunctional system for extramitochondrial regeneration of an important antioxidant.
  •  
15.
  • Spyrou, Giannis, et al. (författare)
  • AP-1 DNA-binding activity is inhibited by selenite and selenodiglutathione
  • 1995
  • Ingår i: FEBS Letters. - : Elsevier. - 0014-5793 .- 1873-3468. ; 368:1, s. 59-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The binding of the transcription factor AP-1 to DNA has been shown to be modulated by redox control mechanisms. Selenite and selenodiglutathione (GS-Se-SG), inhibit mammalian cell growth and are efficient oxidants of reduced thioredoxin and reduced thioredoxin reductase. Here, we report that selenite and GS-Se-SG efficiently inhibited AP-1 DNA-binding in nuclear extracts from 3B6 lymphocytes. A GS-Se-SG concentration of 0.75 microM resulted in 50% inhibition of AP-1 DNA-binding, whereas the same effect was achieved with 7.5 microM selenite. Nuclear extracts prepared from human 3B6 lymphocytes exposed for 4 h to 10 microM selenite showed a 50% reduction of AP-1 binding. These data suggest that selenite and selenodiglutathione inactivate the AP-1 factor and provide a mechanism by which selenium compounds inhibit cell growth.
  •  
16.
  • Spyrou, Giannis, et al. (författare)
  • Selenite and selenate inhibit human lymphocyte growth via different mechanisms
  • 1996
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 56:19, s. 4407-4412
  • Tidskriftsartikel (refereegranskat)abstract
    • Selenium compounds like selenite and selenate have strong inhibitory effects, particularly on mammalian tumor cell growth by unknown mechanisms. We found that the addition of sodium selenite and sodium selenate inhibited the growth of human 3B6 and BL41 lymphocytes. Selenite was more potent because 10 microM selenite produced a growth inhibitory effect similar to that of 250 microM selenate. The mechanism of action of selenite and selenate appears to be different. 3B6 and BL41 cells treated with selenite accumulated in the S-phase; however, selenate caused an accumulation of cells in G2. Selenite-mediated growth inhibition was irreversible, although the effects of selenate could be reversed. Selenite, in contrast to selenate, is efficiently reduced by the thioredoxin system (thioredoxin, thioredoxin reductase, and NADPH). At concentrations required to observe a similar effect on cell growth, the activity of thioredoxin reductase, recently shown to be a selenoprotein, increased in selenite-treated cells and decreased in selenate-treated cells. Ribonucleotide reductase activity was inhibited in an in vitro assay by selenite and selenodiglutathione but not by selenate. These results show that selenite and selenate use different mechanisms to inhibit cell growth.
  •  
17.
  • Xia, Ling, et al. (författare)
  • The mammalian cytosolic selenoenzyme thioredoxin reductase reduces ubiquinone. A novel mechanism for defense against oxidative stress
  • 2003
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 278:4, s. 2141-2146
  • Tidskriftsartikel (refereegranskat)abstract
    • The selenoprotein thioredoxin reductase (TrxR1) is an essential antioxidant enzyme known to reduce many compounds in addition to thioredoxin, its principle protein substrate. Here we found that TrxR1 reduced ubiquinone-10 and thereby regenerated the antioxidant ubiquinol-10 (Q10), which is important for protection against lipid and protein peroxidation. The reduction was time- and dose-dependent, with an apparent K(m) of 22 microm and a maximal rate of about 12 nmol of reduced Q10 per milligram of TrxR1 per minute. TrxR1 reduced ubiquinone maximally at a physiological pH of 7.5 at similar rates using either NADPH or NADH as cofactors. The reduction of Q10 by mammalian TrxR1 was selenium dependent as revealed by comparison with Escherichia coli TrxR or selenium-deprived mutant and truncated mammalian TrxR forms. In addition, the rate of reduction of ubiquinone was significantly higher in homogenates from human embryo kidney 293 cells stably overexpressing thioredoxin reductase and was induced along with increasing cytosolic TrxR activity after the addition of selenite to the culture medium. These data demonstrate that the selenoenzyme thioredoxin reductase is an important selenium-dependent ubiquinone reductase and can explain how selenium and ubiquinone, by a combined action, may protect the cell from oxidative damage.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy