SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bogomolov S. L.) srt2:(2010-2014)"

Sökning: WFRF:(Bogomolov S. L.) > (2010-2014)

  • Resultat 11-20 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Adriani, O., et al. (författare)
  • PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy
  • 2010
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 105:12, s. 121101-
  • Tidskriftsartikel (refereegranskat)abstract
    • The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
  •  
12.
  • Adriani, O., et al. (författare)
  • The gamma-400 space observatory : Status and perspectives
  • 2014
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The present design of the new space observatory GAMMA-400 is presented in this paper. The instrument has been designed for the optimal detection of gamma rays in a broad energy range (from ∼100 MeV up to 3 TeV), with excellent angular and energy resolution. The observatory will also allow precise and high statistic studies of the electron component in the cosmic rays up to the multi TeV region, as well as protons and nuclei spectra up to the knee region. The GAMMA-400 observatory will allow to address a broad range of science topics, like search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts and charged cosmic rays acceleration and diffusion mechanism up to the knee. 
  •  
13.
  • Adriani, O., et al. (författare)
  • Time Dependence Of The Proton Flux Measured By Pamela During The 2006 July-2009 December Solar Minimum
  • 2013
  • Ingår i: Astrophysical Journal. - : IOP Publishing. - 0004-637X .- 1538-4357. ; 765:2, s. 91-
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmic radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade, the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from 2006 July to 2009 December by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.
  •  
14.
  • De Simone, N., et al. (författare)
  • PAMELA : Measurements of matter and antimatter in space
  • 2011
  • Ingår i: Nuovo cimento della societa italiana de fisica. C, Geophysics and space physics. - 1124-1896 .- 1826-9885. ; 34:3, s. 79-87
  • Tidskriftsartikel (refereegranskat)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The primary scientific goal is the measurement of the antiproton and positron energy spectra in order to search for exotic sources, such as dark matter particle annihilations. PAMELA is also searching for primordial antinuclei (antihelium), and testing cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and precision studies of light nuclei and their isotopes. Moreover, PAMELA investigates phenomena connected with solar and earth physics. The main results and updated data will be presented.
  •  
15.
  • Koldobskiy, S. A., et al. (författare)
  • Galactic deuteron spectrum measured in PAMELA experiment
  • 2013
  • Ingår i: 23Rd European Cosmic Ray Symposium (And 32Nd Russian Cosmic Ray Conference). - : IOP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • Results of galactic deuteron spectrum measurement by means of PAMELA apparatus are described. PAMELA is an international experiment developed for antimatter search and measurement of p, He, electron and positron spectra in wide energy range. In addition, PAMELA allows to identify and measure deuteron spectrum at low energies. In this paper deuteron-to-proton ratio and deuteron spectrum are presented.
  •  
16.
  • Koldobskiy, S. A., et al. (författare)
  • Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment
  • 2013
  • Ingår i: Bulletin of the Russian Academy of Sciences: Physics. - : Allerton Press. - 1062-8738. ; 77:5, s. 606-608
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the results of measuring the deuteron spectrum of Galactic cosmic rays (GCRs) with the PAMELA experiment. The PAMELA is an international experiment. Its main objectives are to search for antimatter and measure proton, helium nuclei, electron, and positron spectra over a wide range of energies. In addition, the experimental setup allows the detection of deuterons and the reconstruction of their spectra at low energies. Cosmic ray deuteron spectrum and the deuteron-proton ratio measured in the PAMELA experiment in the energy range of 50-650 MeV/nucleon are presented below.
  •  
17.
  • Leonov, A. A., et al. (författare)
  • The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation
  • 2014
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be realized by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of scientific topics. Search for signatures of dark matter, surveying the celestial sphere in order to study point and extended sources of gamma-rays, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, study of gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measurements of spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution ~1% and angular resolution better than 0.02 deg. The methods, developed to reconstruct the direction of incident gamma photon, are presented in this paper, as well as, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The first point concerns with the space topology of high-energy gamma photon interaction in the matter of GAMMA-400. Multiple secondary particles, generated inside gamma-ray telescope, produce significant problems to restore the direction of initial gamma photon. Also back-splash particles, i.e., charged particles and gamma photons generated in calorimeter and moved upward, mask the initial tracks of electron/positron pair from conversion of incident gamma photon. The processed methods allow us to reconstruct the direction of electromagnetic shower axis and extract the electron/positron trace. As a result, the direction of incident gamma photon with the energy of 100 GeV is calculated with an accuracy of better than 0.02 deg. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10 -3 for high energies. The separate contribution in proton rejection is studied for each detector system of the GAMMA-400 gamma-ray telescope. Using combined information from all detector systems allow us to provide the rejection from protons with a factor of ~4 10 5 for vertical incident particles and ~3 10 5 for particle with initial inclination of 30 deg. Science with the New Generation of High Energy Gamma-ray experiments, 10th Workshop (Scineghe2014) 04-06 June 2014 Lisbon - Portugal. 
  •  
18.
  • Mocchiutti, E., et al. (författare)
  • PAMELA and electrons
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • The 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The measurement of the positron to electron fraction and of the electron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations, are within the PAMELA primary scientific goal.
  •  
19.
  • Mocchiutti, E., et al. (författare)
  • Results from PAMELA
  • 2011
  • Ingår i: NUCL PHYS B-PROC SUP. - : Elsevier BV. ; , s. 243-248
  • Konferensbidrag (refereegranskat)abstract
    • The PAMELA satellite experiment was launched into low earth orbit on June 15(th) 2006. The combination of a permanent magnet silicon strip spectrometer and a silicon-tungsten imaging calorimeter allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV - several hundred GeV). A primary scientific goal is to search for dark matter particle annihilation by measuring the energy spectra of cosmic ray antiparticles. Latest results from the PAMELA experiment are presented with a particular focus on cosmic ray antiprotons and positrons.
  •  
20.
  • Picozza, P., et al. (författare)
  • Cosmic ray studies with PAMELA experiment
  • 2011
  • Ingår i: Proceedings of the 14th Lomonosov Conference on Elementary Particle Physics: Particle Physics at the Year of Astronomy. - 9814329673 - 9789814329675 ; , s. 200-206
  • Konferensbidrag (refereegranskat)abstract
    • The instrument PAMELA, in orbit since June 15th, 2006 on board of the Russian satellite Resurs DK1, is daily delivering to ground 16 Gigabytes of data. The apparatus is designed to study charged particles in the cosmic radiation, with a particular focus on antiparticles for searching antimatter and signals of dark matter annihilation. A combination of a magnetic spectrometer and different detectors allows antiparticles to be reliably identified from a large background of other charged particles. New results on the antiproton-to-proton and positron-toall electron ratios over a wideenergy range (1-100 GeV) have been obtained from the PAMELA mission. These data are mainly interpreted in terms of dark matter annihilation or pulsar contribution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy