SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Botto C) "

Sökning: WFRF:(Botto C)

  • Resultat 11-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  •  
13.
  •  
14.
  • Pekkinen, M., et al. (författare)
  • Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2
  • 2019
  • Ingår i: Jci Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 4:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms leading to osteoporosis are incompletely understood. Genetic disorders with skeletal fragility provide insight into metabolic pathways contributing to bone strength. We evaluated 6 families with rare skeletal phenotypes and osteoporosis by next-generation sequencing. In all the families, we identified a heterozygous variant in SGMS2, a gene prominently expressed in cortical bone and encoding the plasma membrane-resident sphingomyelin synthase SMS2. Four unrelated families shared the same nonsense variant, c.148C>T (p.Arg50*), whereas the other families had a missense variant, c.185T>G (p.IIe62Ser) or c.191T>G (p.Met64Arg). Subjects with p.Arg50* presented with childhood-onset osteoporosis with or without cranial sclerosis. Patients with p.IIe62Ser or p.Met64Arg had a more severe presentation, with neonatal fractures, severe short stature, and spondylometaphyseal dysplasial Several subjects had experienced peripheral facial nerve palsy or other neurological manifestations. Bone biopsies showed markedly altered bone material characteristics, including defective bone mineralization. Osteoclast formation and function in vitro was normal. While the p.Arg50* mutation yielded a catalytically inactive enzyme, p.IIe62Ser and p.Met64Arg each enhanced the rate of de novo sphingomyelin production by blocking export of a functional enzyme from the endoplasmic reticulum. SGMS2 pathogenic variants underlie a spectrum of skeletal conditions, ranging from isolated osteoporosis to complex skeletal dysplasia, suggesting a critical role for plasma membrane-bound sphingomyelin metabolism in skeletal homeostasis.
  •  
15.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
16.
  • Bell, Jane C., et al. (författare)
  • Survival of infants born with esophageal atresia among 24 international birth defects surveillance programs
  • 2021
  • Ingår i: Birth Defects Research. - : Wiley. - 2472-1727. ; 113:12, s. 945-957
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Esophageal atresia (EA) affects around 2.3–2.6 per 10,000 births world-wide. Infants born with this condition require surgical correction soon after birth. Most survival studies of infants with EA are locally or regionally based. We aimed to describe survival across multiple world regions. Methods: We included infants diagnosed with EA between 1980 and 2015 from 24 birth defects surveillance programs that are members of the International Clearinghouse for Birth Defects Surveillance and Research. We calculated survival as the proportion of liveborn infants alive at 1 month, 1- and 5-years, among all infants with EA, those with isolated EA, those with EA and additional anomalies or EA and a chromosomal anomaly or genetic syndrome. We also investigated trends in survival over the decades, 1980s–2010s. Results: We included 6,466 liveborn infants with EA. Survival was 89.4% (95% CI 88.1–90.5) at 1-month, 84.5% (95% CI 83.0–85.9) at 1-year and 82.7% (95% CI 81.2–84.2) at 5-years. One-month survival for infants with isolated EA (97.1%) was higher than for infants with additional anomalies (89.7%) or infants with chromosomal or genetic syndrome diagnoses (57.3%) with little change at 1- and 5-years. Survival at 1 month improved from the 1980s to the 2010s, by 6.5% for infants with isolated EA and by 21.5% for infants with EA and additional anomalies. Conclusions: Almost all infants with isolated EA survived to 5 years. Mortality was higher for infants with EA and an additional anomaly, including chromosomal or genetic syndromes. Survival improved from the 1980s, particularly for those with additional anomalies.
  •  
17.
  • Gangappa, Sreeramaiah N, et al. (författare)
  • The Arabidopsis B-BOX Protein BBX25 Interacts with HY5, Negatively Regulating BBX22 Expression to Suppress Seedling Photomorphogenesis
  • 2013
  • Ingår i: Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 25:4, s. 1243-1257
  • Tidskriftsartikel (refereegranskat)abstract
    • ELONGATED HYPOCOTYL5 (HY5) is a basic domain/leucine zipper (bZIP) transcription factor, central for the regulation of seedling photomorphogenesis. Here, we identified a B-BOX (BBX)–containing protein, BBX25/SALT TOLERANCE HOMOLOG, as an interacting partner of HY5, which has been previously found to physically interact with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1). BBX25 physically interacts with HY5 both in vitro and in vivo. By physiological and genetic approaches, we showed that BBX25 is a negative regulator of seedling photomorphogenesis. BBX25 and its homolog BBX24 regulate deetiolation processes and hypocotyl shade avoidance response in an additive manner. Moreover, genetic relationships of bbx25 and bbx24 with hy5 and cop1 revealed that BBX25 and BBX24 additively enhance COP1 and suppress HY5 functions. BBX25 accumulates in a light-dependent manner and undergoes COP1-mediated degradation in dark and light conditions. Furthermore, a protoplast cotransfection assay showed that BBX24 and BBX25 repress BBX22 expression by interfering with HY5 transcriptional activity. As HY5 binds to the BBX22 promoter and promotes its expression, our results identify a direct mechanism through which the expression of BBX22 is regulated. We suggest that BBX25 and BBX24 function as transcriptional corepressors, probably by forming inactive heterodimers with HY5, downregulating BBX22 expression for the fine-tuning of light-mediated seedling development.
  •  
18.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-19 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy