SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brohlin Maria) "

Sökning: WFRF:(Brohlin Maria)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • McGrath, Aleksandra, et al. (författare)
  • Fibrin conduit supplemented with human mesenchymal stem cells supports regeneration after peripheral nerve injury
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • To address the need for the development of bioengineered replacement of a nerve graft for treatment of peripheral nerve injuries a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (hMSC) and immunosupressive treatment with cyclosporine. MSC possess the advantage of lower donor site morbidity and easier expandability in vitro compared with Schwann cells. The effects of hMSC on axonal regeneration in the conduit and reaction of activated macrophages was investigated using sciatic nerve injury model. The experiments were performed on 20 female Fischer rats (8-10 weeks old). A 10mm gap in the sciatic nerve was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with hMSC at concentration of 80x106 cells per ml. Cells were labeled with PKH26 prior to transplantation. The animals were allowed to survive for 3 weeks and some groups were treated with daily injections of cyclosporine. After 3 weeks the conduits were harvested and the distance of regeneration and area occupied by regenerating axons together with ED1 staining of activated macrophages was measured. hMSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine treatment. Moreover, cyclosporine significantly reduced the ED1 macrophage reaction.
  •  
12.
  • McGrath, Aleksandra M, et al. (författare)
  • Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury
  • 2012
  • Ingår i: Neuroscience Letters. - : Elsevier. - 0304-3940 .- 1872-7972. ; 516:2, s. 171-176
  • Tidskriftsartikel (refereegranskat)abstract
    • To address the need for the development of bioengineered replacement of a nerve graft, a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (MSC) and immunosupressive treatment with cyclosporine A. The effects of MSC on axonal regeneration in the conduit and reaction of activated macrophages were investigated using sciatic nerve injury model. A 10mm gap in the sciatic nerve of a rat was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with MSC at concentration of 80×10(6)cells/ml. Cells were labeled with PKH26 prior to transplantation. The animals received daily injections of cyclosporine A. After 3 weeks the distance of regeneration and area occupied by regenerating axons and ED1 positives macrophages was measured. MSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine A treatment. Moreover, addition of cyclosporine A to the conduits with transplanted MSC significantly reduced the ED1 macrophage reaction.
  •  
13.
  • McGrath, Aleksandra M., et al. (författare)
  • Long-Term Effects of Fibrin Conduit with Human Mesenchymal Stem Cells and Immunosuppression after Peripheral Nerve Repair in a Xenogenic Model
  • 2018
  • Ingår i: Cell Medicine. - : SAGE Publications. - 2155-1790. ; 10, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Previously we showed that a fibrin glue conduit with human mesenchymal stem cells (hMSCs) and cyclosporine A (CsA) enhanced early nerve regeneration. In this study long term effects of this conduit are investigated. Methods: In a rat model, the sciatic nerve was repaired with fibrin conduit containing fibrin matrix, fibrin conduit containing fibrin matrix with CsA treatment and fibrin conduit containing fibrin matrix with hMSCs and CsA treatment, and also with nerve graft as control. Results: At 12 weeks 34% of motoneurons of the control group regenerated axons through the fibrin conduit. CsA treatment alone or with hMSCs resulted in axon regeneration of 67% and 64% motoneurons respectively. The gastrocnemius muscle weight was reduced in the conduit with fibrin matrix. The treatment with CsA or CsA with hMSCs induced recovery of the muscle weight and size of fast type fibers towards the levels of the nerve graft group. Discussion: The transplantation of hMSCs for peripheral nerve injury should be optimized to demonstrate their beneficial effects. The CsA may have its own effect on nerve regeneration.
  •  
14.
  • Novikova, Liudmila N, et al. (författare)
  • Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair
  • 2008
  • Ingår i: Biomaterials. - : Elsevier BV. - 0142-9612 .- 1878-5905. ; 29:9, s. 1198-1206
  • Tidskriftsartikel (refereegranskat)abstract
    • Cavity formation is an important obstacle impeding regeneration after spinal cord injury and bridging strategies are essential to provide physical substrate allowing axons to grow across the lesion site. In this study we evaluated effects of biodegradable tubular conduit made from poly-beta-hydroxybutyrate (PHB) scaffold with predominantly unidirectional fiber orientation and supplemented with cultured adult Schwann cells on axonal regeneration after cervical spinal cord injury in adult rats. After transplantation into the injured spinal cord, plain PHB conduit was well-integrated into posttraumatic cavity and induced modest astroglial reaction. Regenerating axons were found mainly outside the PHB with only single fibers crossing the host-graft interface. No host Schwann cells migrated into the graft. In contrast, when suspension of adult Schwann cells was added to the PHB during transplantation, neurofilament-positive axons filled the conduit and became associated with the implanted cells. Although rubrospinal fibers did not enter the PHB, numerous raphaespinal and CGRP-positive axons were found within the conduit. Modification of PHB surface with fibronectin, laminin or collagen significantly increased Schwann cell attachment and proliferation in vitro. However, transplantation of PHB conduit pre-coated with fibronectin and seeded with Schwann cells did not alter axonal growth response. The results demonstrate that a PHB scaffold promotes attachment, proliferation and survival of adult Schwann cells and supports marked axonal regeneration within the graft.
  •  
15.
  • Novikova, Liudmila N, et al. (författare)
  • Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats
  • 2011
  • Ingår i: Cytotherapy. - : Elsevier BV. - 1465-3249 .- 1477-2566. ; 13:7, s. 873-887
  • Tidskriftsartikel (refereegranskat)abstract
    • Background aims. Bone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord. Methods. After cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2-13 weeks after transplantation. Results and Conclusions. Treatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.
  •  
16.
  • Qu, Chengjuan, 1967-, et al. (författare)
  • Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium
  • 2020
  • Ingår i: Cell and Tissue Research. - : Springer. - 0302-766X .- 1432-0878. ; 380, s. 93-105
  • Tidskriftsartikel (refereegranskat)abstract
    • This study was aimed to investigate the effects of cGMP xeno-/serum-free medium (XSF, Irvine Scientific) on the properties of human dental pulp stem cells (DPSCs). DPSCs, from passage 2, were cultured in XSF or fetal bovine serum (FBS)-supplemented medium, and sub-cultured up to passage 8. Cumulative population doublings (PDs) and the number of colony-forming-units (CFUs) were determined. qRT-PCR, ELISA, and in vitro assays were used to assess angiogenic capacity. Flow cytometry was used to measure CD73, CD90, and CD105 expression. Differentiation into osteo-, adipo-, and chondrogenic cell lineages was performed. DPSCs showed more elongated morphology, a reduced rate of proliferation at later passages, and lower CFU counts in XSF compared with FBS. Expression of angiogenic factors at the gene and protein levels varied in the two media and with passage number, but cells grown in XSF had more in vitro angiogenic activity. The majority of early and late passage DPSCs cultured in XSF expressed CD73 and CD90. In contrast, the percentage of CD105 positive DPSCs in XSF medium was significantly lower with increased passage whereas the majority of cells cultured in FBS were CD105 positive. Switching XSF-cultured DPSCs to medium supplemented with human serum restored the expression of CD105. The tri-lineage differentiation of DPSCs cultured under XSF and FBS conditions was similar. We showed that despite reduced CD105 expression levels, DPSCs expanded in XSF medium maintained a functional MSC phenotype. Furthermore, restoration of CD105 expression is likely to occur upon in vivo transplantation, when cells are exposed to human serum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy