SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Chen Jianhong) "

Sökning: WFRF:(Chen Jianhong)

  • Resultat 11-20 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Chen, Jianhong, 1993- (författare)
  • Biomass-derived nanoscopic catalysts for water treatment : Structure-property relationship investigation
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Green Chemistry has received widespread interest due to its capacity to meet environmental and economic objectives. The Twelve Principles were proposed to better perform Green Chemistry and have become the guideline for solving many environmental issues. Water contamination has become a major global challenge in the 21st century. Millions of people die from diseases caused by drinking contaminated water. Nitrate, metal ions and dye are the most frequent contaminants. Nitrate in drinking water, after ingestion, is reduced to nitrite by the gastrointestinal tract and threatens human health. Dye-polluted water is usually nonbiodegradable and poisonous: the main criticism is that it is harmful to human health and hampers the photosynthesis rate of aquatic life. Metal ions generally lead to biological and physiological complications when they bind to cellular macromolecules. Therefore, efficient and eco-friendly purification technology is pressing to provide solutions for water purification. This thesis is set out to investigate the electro-/photo- catalytical water purification techniques using different catalysts. Efficient nitrate electrochemical reduction was achieved by using NDC materials, and the active sites were determined with the help of a comprehensive solid-state NMR supported by theoretical calculation and DFT calculations. Furthermore, the photochemical dye degradation was performed using cellulose-based hybrid bio-inorganic catalysts. The intentional maintenance of the surface functional groups on cellulose-based materials can promote dye degradation performance and, most importantly, achieve simultaneous removal of heavy metal ions aside from photo dye degradation. Additionally, this thesis proposed two possible synthesis strategies to obtain electro-/photo- catalysts using cellulose-based materials as renewable resources. The Twelve Principles of Green Chemistry guided the optimization of the synthesis route and raw material selectivity. Notably, the low-temperature synthesis of hybrid photocatalysts maintained the surface functional groups and preserved the kinetic mechanism of contaminants' adsorption on bio-substrate.  This research is likely to contribute to a deeper understanding of renewable materials with green synthesis methods for catalysts targeting water contamination treatment.
  •  
12.
  • Das, Biswanath, et al. (författare)
  • Bifunctional and regenerable molecular electrode for water electrolysis at neutral pH
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:25, s. 13331-13340
  • Tidskriftsartikel (refereegranskat)abstract
    • The instability of molecular electrodes under oxidative/reductive conditions and insufficient understanding of the metal oxide-based systems have slowed down the progress of H2-based fuels. Efficient regeneration of the electrode's performance after prolonged use is another bottleneck of this research. This work represents the first example of a bifunctional and electrochemically regenerable molecular electrode which can be used for the unperturbed production of H2 from water. Pyridyl linkers with flexible arms (–CH2–CH2–) on modified fluorine-doped carbon cloth (FCC) were used to anchor a highly active ruthenium electrocatalyst [RuII(mcbp)(H2O)2] (1) [mcbp2− = 2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine]. The pyridine unit of the linker replaces one of the water molecules of 1, which resulted in RuPFCC (ruthenium electrocatalyst anchored on –CH2–CH2–pyridine modified FCC), a high-performing electrode for oxygen evolution reaction [OER, overpotential of ∼215 mV] as well as hydrogen evolution reaction (HER, overpotential of ∼330 mV) at pH 7. A current density of ∼8 mA cm−2 at 2.06 V (vs. RHE) and ∼−6 mA cm−2 at −0.84 V (vs. RHE) with only 0.04 wt% loading of ruthenium was obtained. OER turnover of >7.4 × 103 at 1.81 V in 48 h and HER turnover of >3.6 × 103 at −0.79 V in 3 h were calculated. The activity of the OER anode after 48 h use could be electrochemically regenerated to ∼98% of its original activity while it serves as a HE cathode (evolving hydrogen) for 8 h. This electrode design can also be used for developing ultra-stable molecular electrodes with exciting electrochemical regeneration features, for other proton-dependent electrochemical processes.
  •  
13.
  • Das, Biswanath, et al. (författare)
  • Cobalt Electrocatalyst on Fluorine Doped Carbon Cloth – a Robust and Partially Regenerable Anode for Water Oxidation
  • 2022
  • Ingår i: ChemCatChem. - : Wiley. - 1867-3880 .- 1867-3899. ; 14:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The low stability of the electrocatalysts at water oxidation (WO) conditions and the use of expensive noble metals have obstructed large-scale H2 production from water. Herein, we report the electrocatalytic WO activity of a cobalt-containing, water-soluble molecular WO electrocatalyst [CoII(mcbp)(OH2)] (1) [mcbp2−=2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine] in homogeneous conditions (overpotential of 510 mV at pH 7 phosphate buffer) and after anchoring it on pyridine-modified fluorine-doped carbon cloth (PFCC). The formation of cobalt phosphate was identified only after 4 h continuous oxygen evolution in homogeneous conditions. Interestingly, a significant enhancement of the stability and WO activity (current density of 5.4 mA/cm2 at 1.75 V) was observed for 1 after anchoring onto PFCC, resulting in a turnover (TO) of >3.6×103 and average TOF of 0.05 s−1 at 1.55 V (pH 7) over 20 h. A total TO of >21×103 over 8 days was calculated. The electrode allowed regeneration of∼ 85 % of the WO activity electrochemically after 36 h of continuous oxygen evolution. 
  •  
14.
  • Gopakumar, Aswin, et al. (författare)
  • Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H2O2 from Seawater
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:6, s. 2603-2613
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0–5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations. 
  •  
15.
  • Jin, Cheng, et al. (författare)
  • Low-Cost mmWave Metallic Waveguide Based on Multilayer Integrated Vertical-EBG Structure and its Application to Slot Array Antenna Design
  • 2022
  • Ingår i: IEEE Transactions on Antennas and Propagation. - 0018-926X .- 1558-2221. ; 70:3, s. 2205-2213
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel methodology to create metallic waveguides with multilayer integrated vertical-electromagnetic bandgap (EBG) structure is proposed in this article, and the structure realizes low-cost millimeter-wave (mmWave) slot array antennas. A multilayer stack of easy-to-process thin metallic etching plates is introduced to design mmWave waveguide using compression fit instead of diffusion bonding and welding assembly process. The electromagnetic (EM) wave leakage from the gaps between the metallic plates is suppressed using the vertical-EBG structure and antiphasing feeding. The dispersion diagrams of the vertical-EBG unit cell are investigated to illustrate the suppression of leakage. Another leakage wave intercepting methodology is adopted by antiphase feeding to prevent leakage wave from the adjacent slot subarrays. Finally, two examples of 2 $\times $ 8 and 8 $\times $ 8 slot array antennas are presented to verify our design concept. The measured impedance bandwidths of the two antennas are 77.1-84.6 GHz (9.3%) and 78.6-84.9 GHz (7.7%). In addition, the 3 dB broadside gain bandwidths are 73.1-85.3 GHz (15.1%) and 76.8-84.4 GHz (9.4%). The results show the aperture efficiencies up to 56.4%.
  •  
16.
  • Kaya, Kerem, et al. (författare)
  • Enhanced Solar CO2 Photoreduction to Formic Acid by Platinum Immobilization on Bipyridine Covalent Triazine Framework with Defects
  • 2023
  • Ingår i: Advanced Sustainable Systems. - 2366-7486. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The immobilization and structural analysis of platinum nanoparticles on a nitrogen-rich, bipyridine-containing covalent triazine framework (bpyCTF) having structural defects are disclosed by taking advantage of 15N solid-state nuclear magnetic resonance measurements at natural 15N isotope abundance and X-ray photoelectron spectroscopic analyses. The photocatalyst (Pt@bpyCTF) with structural defects reduces CO2 to formic acid (FA) at a rate of 152 µmol h−1g−1 and a selectivity higher than 95% over CO and H2 in water under simulated solar light. The presence of amine defects and the immobilization of Pt cause improvement in the photocurrent density and CO2 capture capacity (≈8% by weight) despite the moderate surface area (0.54 cm3 g−1)of the photocatalyst. Theoretical models and density functional theory calculations are employed to investigate the possible CO2 reduction reaction (CO2RR) mechanisms. Considering the exceptional CO2 capture capacity and high FA production using only CO2-bubbled water, this work highlights the great potential of nitrogen-rich CTFs for photocatalyzed CO2RRs under green conditions.
  •  
17.
  • Lindenbeck, Lucie, et al. (författare)
  • MoS2 nanoflower-decorated lignin nanoparticles for superior lubricant properties
  • 2023
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; :20
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignin has been, for a long time, treated as a low-value waste product. To change this scenario, high-value applications have been recently pursued, e.g., the preparation of hybrid materials with inorganic components. Although hybrid inorganic-based materials can benefit from the reactive lignin phenolic groups at the interface, often responsible for optimizing specific properties, this is still an underexplored field. Here, we present a novel and green material based on the combination of hydroxymethylated lignin nanoparticles (HLNPs) with molybdenum disulfide (MoS2) nanoflowers grown via a hydrothermal route. By bringing together the lubricant performance of MoS2 and the structural stability of biomass-based nanoparticles, a MoS2-HLNPs hybrid is presented as a bio-derived additive for superior tribological performances. While FT-IR analysis confirmed the structural stability of lignin after the hydrothermal growth of MoS2, TEM and SEM micrographs revealed a homogeneous distribution of MoS2 nanoflowers (average size of 400 nm) on the HLNPs (average size of 100 nm). Regarding the tribological tests, considering a pure oil as reference, only HLNPs as bio-derived additives led to a reduction in the wear volume of 18%. However, the hybrid of MoS2-HLNPs led to a considerably higher reduction (71%), pointing out its superior performance. These results open a new window of opportunity for a versatile and yet underexplored field that can pave the way for a new class of biobased lubricants.
  •  
18.
  • Lu, Can, et al. (författare)
  • Semi Transparent Three-Dimensional Macroporous Quaternary Oxynitride Photoanodes for Photoelectrochemical Water Oxidation
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:15, s. 6902-6911
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi transparent three-dimensional macroporous (3DM) photoanodes based on quaternary oxynitrides have the potential to simultaneously realize superior light harvesting and efficient charge transfer in a tandem photoelectrochemical (PEC) cell. A 3DM CaTaO2N photoanode was prepared for the first time on a GaN/Al2O3 substrate via a chemical route, and it exhibits a high transmittance of > 60% in the wide solar spectrum and a photoresponse onset at -0.3 V versus the reversible hydrogen electrode (V-RHE) under simulated solar illumination. In particular, a plateau photocurrent density of 0.21 mA cm(-2) was achieved at a low potential of 0.4 V-RHE , which was 1.6-fold and more than 50-fold higher than a two-dimensional macroporous (2DM) CaTaO2N/GaN/Al2O3 photoanode and a conventional particle-based CaTaO2N/GaN/Al2O3 photoanode, respectively. The bicontinuous, interconnected pore structure within this 3DM film can improve charge carrier separation and collection by reducing the average diffusion distance for minority carriers toward the electrolyte. Optical measurements and simulations verified the enhanced sunlight harvesting in the 3DM photoanode, which was ascribed to the concentrated distribution of the electric field and multiple scattering. This study provides guidance for future synthesis of highly efficient semitransparent 3DM quaternary oxynitride-based photoanodes for a tandem PEC device.
  •  
19.
  • Lu, Can, et al. (författare)
  • Sensibilization of p-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction
  • 2021
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 13:2, s. 869-877
  • Tidskriftsartikel (refereegranskat)abstract
    • Core/shell quantum dots (QDs) paired with semiconductor photocathodes for water reduction have rarely been implemented so far. We demonstrate the integration of ZnSe/CdS and CdS/ZnSe QDs with porous p-type NiO photocathodes for water reduction. The QDs demonstrate appreciable enhancement in water-reduction efficiency, as compared with the bare NiO. Despite their different structure, both QDs generate comparable photocurrent enhancement, yielding a 3.8- and 3.2-fold improvement for the ZnSe/CdS@NiO and CdS/ZnSe@NiO system, respectively. Unraveling the carrier kinetics at the interface of these hybrid photocathodes is therefore critical for the development of efficient photoelectrochemical (PEC) proton reduction. In addition to examining the carrier dynamics by the Mott–Schottky technique and electrochemical impedance spectroscopy (EIS), we performed theoretical modelling for the distribution density of the carriers with respect to electron and hole wave functions. The electrons are found to be delocalized through the whole shell and can directly actuate the PEC-related process in the ZnSe/CdS QDs. The holes as the more localized carriers in the core have to tunnel through the shell before injecting into the hole transport layer (NiO). Our results emphasize the role of interfacial effects in core/shell QDs-based multi-heterojunction photocathodes.
  •  
20.
  • Ma, Zili, et al. (författare)
  • CeTiO2N oxynitride perovskite : paramagnetic N-14 MAS NMR without paramagnetic shifts
  • 2021
  • Ingår i: Zeitschrift für Naturforschung. B, A journal of chemical sciences. - : Walter de Gruyter GmbH. - 0932-0776 .- 1865-7117. ; 76:5, s. 275-280
  • Tidskriftsartikel (refereegranskat)abstract
    • N-14 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of diamagnetic LaTiO2N perovskite oxynitride and its paramagnetic counterpart CeTiO2N are presented. The latter, to the best of our knowledge, constitutes the first high-resolution N-14 MAS NMR spectrum collected from a paramagnetic solid material. The unpaired 4f-electrons in CeTiO2N do not induce a paramagnetic N-14 NMR shift. This is remarkable given the direct Ce-N contacts in the structure for which ab initio calculations predict substantial Ce -> N-14 contact shift interaction. The same effect is revealed with N-14 MAS NMR for SrWO2N (unpaired 5d-electrons).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 28
Typ av publikation
tidskriftsartikel (27)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Chen, Jianhong (25)
Slabon, Adam (22)
Budnyk, Serhiy (7)
Jaworski, Aleksander (6)
Piątek, Jędrzej (3)
M. Rodrigues, Bruno ... (2)
visa fler...
A. da Cruz, Márcia G ... (2)
Beele, Björn (2)
Sipponen, Mika H. (2)
Frauscher, Marcella (2)
Das, Shoubhik (2)
Åkermark, Björn (2)
Mathew, Aji P. (2)
Thersleff, Thomas (2)
Hedin, Niklas (2)
Dutta, Joydeep, Prof ... (2)
Göthelid, Mats (2)
Budnyak, Tetyana M. (1)
Gueret, Robin (1)
Onwumere, Joy N. (1)
Yarema, Maksym (1)
Li, L. (1)
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
visa färre...
Lärosäte
Stockholms universitet (26)
Uppsala universitet (4)
Kungliga Tekniska Högskolan (3)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
visa fler...
Högskolan i Halmstad (1)
RISE (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (28)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (27)
Teknik (7)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy