SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Combet C.) srt2:(2020)"

Search: WFRF:(Combet C.) > (2020)

  • Result 11-13 of 13
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Aghanim, N., et al. (author)
  • Planck 2018 results III. High Frequency Instrument data processing and frequency maps
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • This paper presents the High Frequency Instrument (HFI) data processing procedures for the Planck 2018 release. Major improvements in mapmaking have been achieved since the previous Planck 2015 release, many of which were used and described already in an intermediate paper dedicated to the Planck polarized data at low multipoles. These improvements enabled the first significant measurement of the reionization optical depth parameter using Planck-HFI data. This paper presents an extensive analysis of systematic effects, including the use of end-to-end simulations to facilitate their removal and characterize the residuals. The polarized data, which presented a number of known problems in the 2015 Planck release, are very significantly improved, especially the leakage from intensity to polarization. Calibration, based on the cosmic microwave background (CMB) dipole, is now extremely accurate and in the frequency range 100-353 GHz reduces intensity-to-polarization leakage caused by calibration mismatch. The Solar dipole direction has been determined in the three lowest HFI frequency channels to within one arc minute, and its amplitude has an absolute uncertainty smaller than 0.35 mu K, an accuracy of order 10(-4). This is a major legacy from the Planck HFI for future CMB experiments. The removal of bandpass leakage has been improved for the main high-frequency foregrounds by extracting the bandpass-mismatch coefficients for each detector as part of the mapmaking process; these values in turn improve the intensity maps. This is a major change in the philosophy of frequency maps, which are now computed from single detector data, all adjusted to the same average bandpass response for the main foregrounds. End-to-end simulations have been shown to reproduce very well the relative gain calibration of detectors, as well as drifts within a frequency induced by the residuals of the main systematic effect (analogue-to-digital convertor non-linearity residuals). Using these simulations, we have been able to measure and correct the small frequency calibration bias induced by this systematic effect at the 10(-4) level. There is no detectable sign of a residual calibration bias between the first and second acoustic peaks in the CMB channels, at the 10(-3) level.
  •  
12.
  • Akrami, Y., et al. (author)
  • Planck 2018 results : XI. Polarized dust foregrounds
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • The study of polarized dust emission has become entwined with the analysis of the cosmic microwave background (CMB) polarization in the quest for the curl-like B-mode polarization from primordial gravitational waves and the low-multipole E-mode polarization associated with the reionization of the Universe. We used the new Planck PR3 maps to characterize Galactic dust emission at high latitudes as a foreground to the CMB polarization and use end-to-end simulations to compute uncertainties and assess the statistical significance of our measurements. We present PlanckEE, BB, and TE power spectra of dust polarization at 353 GHz for a set of six nested high-Galactic-latitude sky regions covering from 24 to 71% of the sky. We present power-law fits to the angular power spectra, yielding evidence for statistically significant variations of the exponents over sky regions and a difference between the values for the EE and BB spectra, which for the largest sky region are alpha (EE)=-2.42 +/- 0.02 and alpha (BB)=-2.54 +/- 0.02, respectively. The spectra show that the TE correlation and E/B power asymmetry discovered by Planck extend to low multipoles that were not included in earlier Planck polarization papers due to residual data systematics. We also report evidence for a positive TB dust signal. Combining data from Planck and WMAP, we have determined the amplitudes and spectral energy distributions (SEDs) of polarized foregrounds, including the correlation between dust and synchrotron polarized emission, for the six sky regions as a function of multipole. This quantifies the challenge of the component-separation procedure that is required for measuring the low-l reionization CMB E-mode signal and detecting the reionization and recombination peaks of primordial CMB B modes. The SED of polarized dust emission is fit well by a single-temperature modified black-body emission law from 353 GHz to below 70 GHz. For a dust temperature of 19.6 K, the mean dust spectral index for dust polarization is beta (P)(d) = 1.53 +/- 0.02 beta d P = 1.53 +/- 0.02 . The difference between indices for polarization and total intensity is beta (P)(d)-beta (I)(d) = 0.05 +/- 0.03 beta d P - beta d I =0.05 +/- 0.03 . By fitting multi-frequency cross-spectra between Planck data at 100, 143, 217, and 353 GHz, we examine the correlation of the dust polarization maps across frequency. We find no evidence for a loss of correlation and provide lower limits to the correlation ratio that are tighter than values we derive from the correlation of the 217- and 353 GHz maps alone. If the Planck limit on decorrelation for the largest sky region applies to the smaller sky regions observed by sub-orbital experiments, then frequency decorrelation of dust polarization might not be a problem for CMB experiments aiming at a primordial B-mode detection limit on the tensor-to-scalar ratio r similar or equal to 0.01 at the recombination peak. However, the Planck sensitivity precludes identifying how difficult the component-separation problem will be for more ambitious experiments targeting lower limits on r.
  •  
13.
  • Akrami, Y., et al. (author)
  • Planck 2018 results IV. Diffuse component separation
  • 2020
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 641
  • Journal article (peer-reviewed)abstract
    • We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previous versions. The methodologies used to derive these maps follow closely those described in earlier papers, adopting four methods (Commander, NILC, SEVEM, and SMICA) to extract the CMB component, as well as three methods (Commander, GNILC, and SMICA) to extract astrophysical components. Our revised CMB temperature maps agree with corresponding products in the Planck 2015 delivery, whereas the polarization maps exhibit significantly lower large-scale power, reflecting the improved data processing described in companion papers; however, the noise properties of the resulting data products are complicated, and the best available end-to-end simulations exhibit relative biases with respect to the data at the few percent level. Using these maps, we are for the first time able to fit the spectral index of thermal dust independently over 3 degrees regions. We derive a conservative estimate of the mean spectral index of polarized thermal dust emission of beta (d)=1.55 +/- 0.05, where the uncertainty marginalizes both over all known systematic uncertainties and different estimation techniques. For polarized synchrotron emission, we find a mean spectral index of beta (s)=-3.1 +/- 0.1, consistent with previously reported measurements. We note that the current data processing does not allow for construction of unbiased single-bolometer maps, and this limits our ability to extract CO emission and correlated components. The foreground results for intensity derived in this paper therefore do not supersede corresponding Planck 2015 products. For polarization the new results supersede the corresponding 2015 products in all respects.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-13 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view