SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Dorlo Thomas P. C. PhD 1983 ) "

Sökning: WFRF:(Dorlo Thomas P. C. PhD 1983 )

  • Resultat 11-20 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Damoiseaux, David, et al. (författare)
  • Predicting Chemotherapy Distribution into Breast Milk for Breastfeeding Women Using a Population Pharmacokinetic Approach
  • 2023
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 62:7, s. 969-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectiveInformation on the distribution of chemotherapeutic drugs to breast milk is scarce, and reports are limited to small sample sizes. Anecdotal pharmacokinetic data have typically been acquired from lactating but non-breastfeeding patients who collect breast milk by means of an expression pump, which might not necessarily be representative for a breastfeeding population due to differences in milk production. Consequently, little is known about the variability of chemotherapy distribution to breast milk and the effect of milk production on the distribution of chemotherapy to breast milk. Our aim was to predict chemotherapy distribution to breast milk in a more realistic breastfeeding population and evaluate the effect of discarding breast milk on the potential chemotherapy exposure in infants.MethodsWe developed a population pharmacokinetic model that described the breast milk production and the chemotherapy distribution to breast milk of a non-breastfeeding population, linked it to plasma pharmacokinetics, and extrapolated this to a breastfeeding population.ResultsWe found that cumulative relative infant doses (RID) were higher than 10% for cyclophosphamide and doxorubicin and approximately 1% for paclitaxel. Simulations allowed us to predict the cumulative RID and its variability in the population for patients with different milk productions and the amount of breast milk that has to be discarded to reach cumulative RIDs below 1%, 0.1%, and 0.01%. Discarding 1–2, 3–6, and 0–1 days of breast milk (depending on the milk production of the patient) resulted in cumulative RID below 1% for cyclophosphamide, doxorubicin, and paclitaxel, respectively.ConclusionOur results may help clinicians to derive the optimal breast milk discarding strategy for an individual patient that wants to breastfeed during chemotherapy and minimize chemotherapy exposure in their infants.
  •  
12.
  • Damoiseaux, David, et al. (författare)
  • Presence of Five Chemotherapeutic Drugs in Breast Milk as a Guide for the Safe Use of Chemotherapy During Breastfeeding : Results From a Case Series.
  • 2022
  • Ingår i: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 112:2, s. 404-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about infant's safety of chemotherapy during breastfeeding where evidence is limited to a few case reports. This lack of knowledge has led to a general tendency to advise against breastfeeding during cytotoxic therapy despite the overwhelming benefits that breastfeeding offers to both the mothers and their children. In this case series, the presence of five chemotherapies in breast milk was determined. The aim was to obtain insight into the presence of these drugs in breast milk to inform and help clinicians in making informed decisions for women who want to breastfeed. Three patients collected 24-hour samples of breast milk every day for 1, 2, or 3 weeks after chemotherapy, 210 in total. After determination of drug concentrations, the infant daily dose, relative daily infant dose (RID%) and cumulative RID were calculated. Cumulative RIDs in patients varied from 10% to values lower than 1%. Rich data allowed us to design a table which gives predictions on the amount of days that breast milk has to be discarded to reach cumulative RIDs below 5, 1, and 0.1% for each compound. For cyclophosphamide, paclitaxel, and carboplatin, cumulative RIDs below 1 or 0.1% are reached if breast milk is discarded for 1-3 days after administration. This might suggest that breastfeeding in between cycles is an option. However, other pharmacological parameters should also be taken into consideration. For doxorubicin, also the levels of the active metabolite doxorubicinol need quantification. Similarly, breastfeeding during treatment with cisplatin might give substantial exposure and we advise caution.
  •  
13.
  • de Jong, Karen, et al. (författare)
  • High accumulation of nivolumab in human breast milk : A case report
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 0753-3322 .- 1950-6007. ; 166
  • Tidskriftsartikel (refereegranskat)abstract
    • Nivolumab is an immunotherapeutic monoclonal antibody (mAb) that is used for the treatment of several types of cancer. The evidence on its use during lactation is lacking. Here, we report on a 39-year-old woman with metastasized melanoma who was treated with 480 mg nivolumab every four weeks during lactation. Breast milk samples were collected over the course of 34 days, including two cycles of nivolumab. The highest measured concentration of nivolumab during the first cycle was 503 ng/mL at day 13. The cumulative relative infant dose (RID) over the first cycle (28 days) was 9.8 %. The highest overall measured nivolumab concentration was 519 ng/mL at day 33, five days after administration of the second nivolumab cycle. Nivolumab seems to accumulate in breast milk over two consecutive cycles, hence the RIDs of consecutive cycles are expected to be higher. To draw further conclusions regarding safety of breastfeeding during nivolumab therapy, more information about the oral bioavailability of nivolumab in newborns, the nivolumab steady-state concentrations in breast milk and its pharmacodynamic effects are needed.
  •  
14.
  • Janssen, Julie M, et al. (författare)
  • Population Pharmacokinetics of Intracellular 5-Fluorouridine 5'-Triphosphate and its Relationship with Hand-and-Foot Syndrome in Patients Treated with Capecitabine.
  • 2021
  • Ingår i: AAPS Journal. - : Springer Nature. - 1550-7416. ; 23:1, s. 23-
  • Tidskriftsartikel (refereegranskat)abstract
    • Capecitabine is an oral pro-drug of 5-fluorouracil. Patients with solid tumours who are treated with capecitabine may develop hand-and-foot syndrome (HFS) as side effect. This might be a result of accumulation of intracellular metabolites. We characterised the pharmacokinetics (PK) of 5-fluorouridine 5'-triphosphate (FUTP) in peripheral blood mononuclear cells (PBMCs) and assessed the relationship between exposure to capecitabine or its metabolites and the development of HFS. Plasma and intracellular capecitabine PK data and ordered categorical HFS data was available. A previously developed model describing the PK of capecitabine and metabolites was extended to describe the intracellular FUTP concentrations. Subsequently, a continuous-time Markov model was developed to describe the development of HFS during treatment with capecitabine. The influences of capecitabine and metabolite concentrations on the development of HFS were evaluated. The PK of intracellular FUTP was described by an one-compartment model with first-order elimination (ke,FUTP was 0.028 h-1 (95% confidence interval 0.022-0.039)) where the FUTP influx rate was proportional to the 5-FU plasma concentrations. The predicted individual intracellular FUTP concentration was identified as a significant predictor for the development and severity of HFS. Simulations demonstrated a clear exposure-response relationship. The intracellular FUTP concentrations were successfully described and a significant relationship between these intracellular concentrations and the development and severity of HFS was identified. This model can be used to simulate future dosing regimens and thereby optimise treatment with capecitabine.
  •  
15.
  • Koele, Simon E, et al. (författare)
  • Power to identify exposure-response relationships in phase IIa pulmonary tuberculosis trials with multi-dimensional bacterial load modeling.
  • 2023
  • Ingår i: CPT. - 2163-8306.
  • Tidskriftsartikel (refereegranskat)abstract
    • Adequate power to identify an exposure-response relationship in a phase IIa clinical trial for pulmonary tuberculosis (TB) is important for dose selection and design of follow-up studies. Currently, it is not known what response marker provides the pharmacokinetic-pharmacodynamic (PK-PD) model more power to identify an exposure-response relationship. We simulated colony-forming units (CFU) and time-to-positivity (TTP) measurements for four hypothetical drugs with different activity profiles for 14 days. The power to identify exposure-response relationships when analyzing CFU, TTP, or combined CFU + TTP data was determined at 60 total participants, or with 25 out of 60 participants in the lowest and highest dosing groups (unbalanced design). For drugs with moderate bactericidal activity, power was low (<59%), irrespective of the data analyzed. Power was 1.9% to 29.4% higher when analyzing TTP data compared to CFU data. Combined analysis of CFU and TTP further improved the power, on average by 4.2%. For a drug with a medium-high activity, the total sample size needed to achieve 80% power was 136 for CFU, 72 for TTP, and 68 for combined CFU + TTP data. The unbalanced design improved the power by 16% over the balanced design. In conclusion, the power to identify an exposure-response relationship is low for TB drugs with moderate bactericidal activity or with a slow onset of activity. TTP provides the PK-PD model with more power to identify exposure-response relationships compared to CFU, and combined analysis or an unbalanced dosing group study design offers modest further improvement.
  •  
16.
  • Molenaar-Kuijsten, Laura, et al. (författare)
  • Everolimus Concentration in Saliva to Predict Stomatitis : A Feasibility Study in Patients with Cancer.
  • 2022
  • Ingår i: Therapeutic Drug Monitoring. - : Ovid Technologies (Wolters Kluwer Health). - 0163-4356 .- 1536-3694. ; 44:4, s. 520-526
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Most patients with cancer treated with everolimus experience stomatitis, which seriously affects the quality of life. The salivary concentrations of everolimus may predict the incidence and severity of stomatitis. The authors aimed to examine whether it was feasible to quantify the everolimus concentration in saliva and subsequently use it to predict stomatitis.METHODS: Saliva and whole blood samples were taken from patients with cancer, who were treated with everolimus in the dosage of either 10 mg once a day or 5 mg twice a day. Everolimus concentrations in saliva samples were measured by liquid chromatography-tandem mass spectrometry. A published population pharmacokinetic model was extended with the everolimus concentration in saliva to assess any association between everolimus in the blood and saliva. Subsequently, the association between the occurrence of stomatitis and the everolimus concentration in saliva was studied.RESULTS: Eleven patients were included in this study; saliva samples were available from 10 patients, including 3 patients with low-grade stomatitis. Everolimus concentrations were more than 100-fold lower in saliva than in whole blood (accumulation ratio 0.00801 and relative standard error 32.5%). Interindividual variability (67.7%) and residual unexplained variability (84.0%) were high. The salivary concentration of everolimus tended to be higher in patients with stomatitis, 1 hour postdose ( P = 0.14).CONCLUSIONS: Quantification of the everolimus concentration in saliva was feasible and revealed a nonsignificant correlation between everolimus concentration in the saliva and the occurrence of stomatitis. If future research proves this relationship to be significant, the everolimus concentration in the saliva may be used as an early predictor of stomatitis without invasive sampling. Thereby, in patients with high salivary everolimus concentrations, precautions can be taken to decrease the incidence and severity of stomatitis.
  •  
17.
  • Palić, Semra, et al. (författare)
  • An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis.
  • 2022
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier BV. - 0924-8579 .- 1872-7913. ; 59:1, s. 106459-
  • Tidskriftsartikel (refereegranskat)abstract
    • Miltefosine is an alkylphosphocholine agent with a broad spectrum of antiparasitic properties. For over two decades, miltefosine has remained the only oral drug licensed and used in the treatment of the neglected tropical disease, leishmaniasis. The last extensive review of the pharmacology of miltefosine was published in 2012. Additional data on the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of miltefosine have become available in the last decade, and there are ongoing and future studies in this area. Miltefosine PK are characterized by slow absorption and elimination, resulting in accumulation of drug in plasma until the end of treatment. Several recent studies established exposure-response relationships for various regimens of miltefosine in the treatment of visceral and cutaneous leishmaniasis, leading to the identification of PK parameters predictive of clinical relapse and outcome. This review provides an update on the most recent developments in the area of clinical pharmacology of miltefosine, including a discussion of the current dosing regimens.
  •  
18.
  • Siebinga, Hinke, et al. (författare)
  • A physiologically based pharmacokinetic model for [Ga-68]Ga-(HA-)DOTATATE to predict whole-body distribution and tumor sink effects in GEP-NET patients
  • 2023
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Little is known about parameters that have a relevant impact on (dis)similarities in biodistribution between various Ga-68-labeled somatostatin analogues. Additionally, the effect of tumor burden on organ uptake remains unclear. Therefore, the aim of this study was to describe and compare organ and tumor distribution of [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE using a physiologically based pharmacokinetic (PBPK) model and to identify factors that might cause biodistribution and tumor uptake differences between both peptides. In addition, the effect of tumor burden on peptide biodistribution in gastroenteropancreatic (GEP) neuroendocrine tumor (NET) patients was assessed.Methods: A PBPK model was developed for [Ga-68]Ga-(HA-)DOTATATE in GEP-NET patients. Three tumor compartments were added, representing primary tumor, liver metastases and other metastases. Furthermore, reactions describing receptor binding, internalization and recycling, renal clearance and intracellular degradation were added to the model. Scan data from GEP-NET patients were used for evaluation of model predictions. Simulations with increasing tumor volumes were performed to assess the tumor sink effect.Results: Data of 39 and 59 patients receiving [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE, respectively, were included. Evaluations showed that the model adequately described image-based patient data and that different receptor affinities caused organ uptake dissimilarities between both peptides. Sensitivity analysis indicated that tumor blood flow and blood volume impacted tumor distribution most. Tumor sink predictions showed a decrease in spleen uptake with increasing tumor volume, which seemed clinically relevant for patients with total tumor volumes higher than similar to 550 mL.Conclusion: The developed PBPK model adequately predicted tumor and organ uptake for this GEP-NET population. Relevant organ uptake differences between [Ga-68]Ga-DOTATATE and [Ga-68]Ga-HA-DOTATATE were caused by different affinity profiles, while tumor uptake was mainly affected by tumor blood flow and blood volume. Furthermore, tumor sink predictions showed that for the majority of patients a tumor sink effect is not expected to be clinically relevant.
  •  
19.
  • Siebinga, Hinke, et al. (författare)
  • Population pharmacokinetic dosimetry model using imaging data to assess variability in pharmacokinetics of 177Lu-PSMA-617 in prostate cancer patients
  • 2023
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 12:8, s. 1060-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies to evaluate and optimize [177Lu]Lu-PSMA treatment focus primarily on individual patient data. A population pharmacokinetic (PK) dosimetry model was developed to explore the potential of using imaging data as input for population PK models and to characterize variability in organ and tumor uptake of [177Lu]Lu-PSMA-617 in patients with low volume metastatic prostate cancer. Simulations were performed to identify the effect of dose adjustments on absorbed doses in salivary glands and tumors. A six-compartment population PK model was developed, consisting of blood, salivary gland, kidneys, liver, tumor, and a lumped compartment representing other tissue (compartment 1–6, respectively), based on data from 10 patients who received [177Lu]Lu-PSMA-617 (2 cycles, ~ 3 and ~ 6 GBq). Data consisted of radioactivity levels (decay corrected) in blood and tissues (9 blood samples and 5 single photon emission computed tomography/computed tomography scans). Observations in all compartments were adequately captured by individual model predictions. Uptake into salivary glands was saturable with an estimated maximum binding capacity (Bmax) of 40.4 MBq (relative standard error 12.3%) with interindividual variability (IIV) of 59.3% (percent coefficient of variation [CV%]). IIV on other PK parameters was relatively minor. Tumor volume was included as a structural effect on the tumor uptake rate constant (k15), where a two-fold increase in tumor volume resulted in a 1.63-fold increase in k15. In addition, interoccasion variability on k15 improved the model fit (43.5% [CV%]). Simulations showed a reduced absorbed dose per unit administered activity for salivary glands after increasing radioactivity dosing from 3 to 6 GBq (0.685 Gy/GBq vs. 0.421 Gy/GBq, respectively). All in all, population PK modeling could help to improve future radioligand therapy research.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy