SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grigelioniene Giedre) "

Sökning: WFRF:(Grigelioniene Giedre)

  • Resultat 11-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Laurell, Tobias, et al. (författare)
  • Identification of three novel FGF16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease.
  • 2014
  • Ingår i: Molecular Genetics & Genomic Medicine. - : Wiley. - 2324-9269. ; 2:5, s. 402-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonsense mutations in FGF16 have recently been linked to X-linked recessive hand malformations with fusion between the fourth and the fifth metacarpals and hypoplasia of the fifth digit (MF4; MIM#309630). The purpose of this study was to perform careful clinical phenotyping and to define molecular mechanisms behind X-linked recessive MF4 in three unrelated families. We performed whole-exome sequencing, and identified three novel mutations in FGF16. The functional impact of FGF16 loss was further studied using morpholino-based suppression of fgf16 in zebrafish. In addition, clinical investigations revealed reduced penetrance and variable expressivity of the MF4 phenotype. Cardiac disorders, including myocardial infarction and atrial fibrillation followed the X-linked FGF16 mutated trait in one large family. Our findings establish that a mutation in exon 1, 2 or 3 of FGF16 results in X-linked recessive MF4 and expand the phenotypic spectrum of FGF16 mutations to include a possible correlation with heart disease.
  •  
12.
  • Leal, Gabriela Ferraz, et al. (författare)
  • Expanding the Clinical Spectrum of Phenotypes Caused by Pathogenic Variants in PLOD2
  • 2018
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 33:4, s. 753-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) is a strikingly heterogeneous group of disorders with a broad range of phenotypic variations. It is also one of the differential diagnoses in bent bone dysplasias along with campomelic dysplasia and thanatophoric dysplasia and can usually be distinguished by decreased bone mineralization and bone fractures. Bent bone dysplasias also include syndromes such as kyphomelic dysplasia (MIM:211350) and mesomelic dysplasia Kozlowski-Reardon (MIM249710), both of which have been under debate regarding whether or not they are a real entity or simply a phenotypic manifestation of another dysplasia including OI. Bruck syndrome type 2 (BRKS2; MIM:609220) is a rare form of autosomal recessive OI caused by biallelic PLOD2 variants and is associated with congenital joint contractures with pterygia. In this report, we present six patients from four families with novel PLOD2 variants. All cases had multiple fractures. Other features ranged from prenatal lethal severe angulation of the long bones as in kyphomelic dysplasia and mesomelic dysplasia Kozlowski-Reardon through classical Bruck syndrome to moderate OI with normal joints. Two siblings with a kyphomelic dysplasia-like phenotype who were stillborn had compound heterozygous variants in PLOD2 (p.Asp585Val and p.Ser166*). One infant who succumbed at age 4 months had a bent bone phenotype phenotypically like skeletal dysplasia Kozlowski-Reardon (with mesomelic shortening, camptodactyly, retrognathia, cleft palate, skin dimples, but also with fractures). He was homozygous for the nonsense variant (p.Trp561*). Two siblings had various degrees of Bruck syndrome caused by the homozygous missense variant, p.His687Arg. Furthermore a boy with a clinical presentation of moderate OI had a possibly pathogenic homozygous variant p.Trp588Cys. Our experience of six patients with biallelic pathogenic variants in PLOD2 expands the phenotypic spectrum in the PLOD2-related phenotypes.
  •  
13.
  • Lindahl, Katarina, et al. (författare)
  • Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta
  • 2015
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 23:8, s. 1042-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype-phenotype studies on 4100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the alpha 1-and alpha 2-chains were associated with the absence of dentinogenesis imperfecta (P<0.0001 vs 0.0049), while only those in the alpha 1-chain were associated with blue sclera (P = 0.0110). Comparing glycine with serine substitutions, alpha 1-alterations were associated with more severe phenotype (P = 0.0031). Individuals with type I OI caused by qualitative vs quantitative mutations were shorter (P < 0.0001), but did not differ considering fractures or BMD. The children in this cohort were estimated to represent >95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in > 95% of an entire OI population.
  •  
14.
  • Lindstrand, Anna, et al. (författare)
  • From cytogenetics to cytogenomics : whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability
  • 2019
  • Ingår i: Genome Medicine. - : BMC. - 1756-994X. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundSince different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test.MethodsWe analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n=68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n=156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure.ResultsFirst, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850kb (min 500bp, max 155Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (>10kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data.Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively.ConclusionThe overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
15.
  • Lindstrand, Anna, et al. (författare)
  • Genome sequencing is a sensitive first-line test to diagnose individuals with intellectual disability
  • 2022
  • Ingår i: Genetics in Medicine. - : ELSEVIER SCIENCE INC. - 1098-3600 .- 1530-0366. ; 24:11, s. 2296-2307
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Individuals with intellectual disability (ID) and/or neurodevelopment disorders (NDDs) are currently investigated with several different approaches in clinical genetic diagnostics. Methods: We compared the results from 3 diagnostic pipelines in patients with ID/NDD: genome sequencing (GS) first (N = 100), GS as a secondary test (N = 129), or chromosomal microarray (CMA) with or without FMR1 analysis (N = 421). Results: The diagnostic yield was 35% (GS -first), 26% (GS as a secondary test), and 11% (CMA/FMR1). Notably, the age of diagnosis was delayed by 1 year when GS was performed as a secondary test and the cost per diagnosed individual was 36% lower with GS first than with CMA/FMR1. Furthermore, 91% of those with a negative result after CMA/FMR1 analysis (338 individuals) have not yet been referred for additional genetic testing and remain undiagnosed. Conclusion: Our findings strongly suggest that genome analysis outperforms other testing strategies and should replace traditional CMA and FMR1 analysis as a first-line genetic test in individuals with ID/NDD. GS is a sensitive, time-and cost-effective method that results in a confirmed molecular diagnosis in 35% of all referred patients. (c) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
16.
  • Soderhall, Cilla, et al. (författare)
  • A Case with Bladder Exstrophy and Unbalanced X Chromosome Rearrangement
  • 2014
  • Ingår i: European Journal of Pediatric Surgery. - : Georg Thieme Verlag KG. - 1439-359X .- 0939-7248. ; 24:4, s. 353-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Bladder exstrophy is a rare congenital malformation of the bladder and is believed to be a complex disorder with genetic and environmental background. We describe a young adult female with an isolated bladder exstrophy and with an X chromosome aberration. Patients and Methods Karyotyping identified an X chromosome rearrangement that was further characterized with array comparative genomic hybridization (CGH) and confirmed by multiplex ligation-dependent probe amplification and fluorescence in situ hybridization (FISH) analysis. Results The identified X chromosome rearrangement in our index patient consists of a gain of chromosomal material in region Xq26.3-> qter and loss in region Xp22.12->pter. This aberration was also carried by her mother and sister, none with bladder exstrophy. All three have a disproportionate short stature, as expected due to the deletion of one of the copies of the SHOX gene on Xp22.3. X-inactivation studies revealed a complete skewed inactivation pattern in carriers. Crossover events in the maternal germline furthermore resulted in different genetic material on the rearranged X chromosome between the index patient and her sister. Conclusion Our findings suggest an X-linked genetic risk factor for bladder exstrophy.
  •  
17.
  • Tham, Emma, et al. (författare)
  • A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9.
  • 2015
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1476-5438 .- 1018-4813.
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare lethal autosomal recessive syndrome with skeletal dysplasia, polycystic kidneys and multiple malformations was first described by Gillessen-Kaesbach et al and subsequently by Nishimura et al. The skeletal features uniformly comprise a round pelvis, mesomelic shortening of the upper limbs and defective ossification of the cervical spine. We studied two unrelated families including three affected fetuses with Gillessen-Kaesbach-Nishimura syndrome using whole-exome and Sanger sequencing, comparative genome hybridization and homozygosity mapping. All affected patients were shown to have a novel homozygous splice variant NM_024740.2: c.1173+2T>A in the ALG9 gene, encoding alpha-1,2-mannosyltransferase, involved in the formation of the lipid-linked oligosaccharide precursor of N-glycosylation. RNA analysis demonstrated skipping of exon 10, leading to shorter RNA. Mass spectrometric analysis showed an increase in monoglycosylated transferrin as compared with control tissues, confirming that this is a congenital disorder of glycosylation (CDG). Only three liveborn children with ALG9-CDG have been previously reported, all with missense variants. All three suffered from intellectual disability, muscular hypotonia, microcephaly and renal cysts, but none had skeletal dysplasia. Our study shows that some pathogenic variants in ALG9 can present as a lethal skeletal dysplasia with visceral malformations as the most severe phenotype. The skeletal features overlap with that previously reported for ALG3- and ALG12-CDG, suggesting that this subset of glycosylation disorders constitutes a new diagnostic group of skeletal dysplasias.European Journal of Human Genetics advance online publication, 13 May 2015; doi:10.1038/ejhg.2015.91.
  •  
18.
  • Wang, Zheng, et al. (författare)
  • Axial Spondylometaphyseal Dysplasia Is Caused by C21orf2 Mutations.
  • 2016
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Axial spondylometaphyseal dysplasia (axial SMD) is an autosomal recessive disease characterized by dysplasia of axial skeleton and retinal dystrophy. We conducted whole exome sequencing and identified C21orf2 (chromosome 21 open reading frame 2) as a disease gene for axial SMD. C21orf2 mutations have been recently found to cause isolated retinal degeneration and Jeune syndrome. We found a total of five biallelic C21orf2 mutations in six families out of nine: three missense and two splicing mutations in patients with various ethnic backgrounds. The pathogenic effects of the splicing (splice-site and branch-point) mutations were confirmed on RNA level, which showed complex patterns of abnormal splicing. C21orf2 mutations presented with a wide range of skeletal phenotypes, including cupped and flared anterior ends of ribs, lacy ilia and metaphyseal dysplasia of proximal femora. Analysis of patients without C21orf2 mutation indicated genetic heterogeneity of axial SMD. Functional data in chondrocyte suggest C21orf2 is implicated in cartilage differentiation. C21orf2 protein was localized to the connecting cilium of the cone and rod photoreceptors, confirming its significance in retinal function. Our study indicates that axial SMD is a member of a unique group of ciliopathy affecting skeleton and retina.
  •  
19.
  • Young, Cameron, et al. (författare)
  • A hypomorphic variant in the translocase of the outer mitochondrial membrane complex subunit TOMM7 causes short stature and developmental delay
  • 2023
  • Ingår i: Human Genetics and Genomics Advances. - : ELSEVIER. - 2666-2477. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial diseases are a heterogeneous group of genetic disorders caused by pathogenic variants in genes encoding gene products that regulate mitochondrial function. These genes are located either in the mitochondrial or in the nuclear genome. The TOMM7 gene encodes a regulatory subunit of the translocase of outer mitochondrial membrane (TOM) complex that plays an essential role in translocation of nuclear-encoded mitochondrial proteins into mitochondria. We report an individual with a homozygous variant in TOMM7 (c.73T>C, p.Trp25Arg) that presented with a syndromic short stature, skeletal abnormalities, muscle hypotonia, microvesicular liver steatosis, and developmental delay. Analysis of mouse models strongly suggested that the identified variant is hypomorphic because mice homozygous for this variant showed a milder phenotype than those with homozygous Tomm7 deletion. These Tomm7 mutant mice show pathological changes consistent with mitochondrial dysfunction, including growth defects, severe lipoatrophy, and lipid accumulation in the liver. These mice die prematurely following a rapidly progressive weight loss during the last week of their lives. Tomm7 deficiency causes a unique alteration in mitochondrial function; despite the bioenergetic deficiency, mutant cells show increased oxygen consumption with normal responses to electron transport chain (ETC) inhibitors, suggesting that Tomm7 deficiency leads to an uncoupling between oxidation and ATP synthesis without impairing the function of the tricarboxylic cycle metabolism or ETC. This study presents evidence that a hypomorphic variant in one of the genes encoding a subunit of the TOM complex causes mitochondrial disease.
  •  
20.
  • Zhao, Sen, et al. (författare)
  • Expanding the mutation and phenotype spectrum of MYH3-associated skeletal disorders
  • 2022
  • Ingår i: NPJ genomic medicine. - : Nature Publishing Group. - 2056-7944. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-β signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-β signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-β signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 20
Typ av publikation
tidskriftsartikel (19)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Grigelioniene, Giedr ... (20)
Nordgren, Ann (5)
Nilsson, Daniel (4)
Anderlid, Britt-Mari ... (4)
Lindstrand, Anna (4)
Dumanski, Jan P (3)
visa fler...
Iwarsson, Erik (2)
Hagenäs, Lars (2)
Eisfeldt, Jesper (2)
Papadogiannakis, Nik ... (2)
Wedell, Anna (2)
Lindahl, Katarina (2)
Åström, Eva (2)
Malmgren, Barbro (2)
Elfving, Maria (2)
Yang, Yang (1)
Wang, Zheng (1)
Nilsson, Nils (1)
Mathiesen, Tiit (1)
Paucar, Martin (1)
Ivarsson, Sten (1)
Magnusson, Mans (1)
Annerén, Göran (1)
Andersson, Kristofer (1)
Wu, Nan (1)
Nilsson, Ola, 1970- (1)
Mäkitie, Outi (1)
Stranneheim, Henrik (1)
Laurence, Arian (1)
Läckgren, Göran (1)
Wirta, Valtteri (1)
Cormier-Daire, Valer ... (1)
Levin, Lars-Åke (1)
Svensson, Johan (1)
Becker, Christian (1)
Arner, Marianne (1)
Martin, Marcel (1)
Mantripragada, Kiran ... (1)
Clementson Kockum, C ... (1)
Lindgren, Peter (1)
Svensson, Eva (1)
Dahllöf, Goran (1)
Kindmark, Andreas, 1 ... (1)
Rubin, Carl-Johan (1)
Ahituv, Nadav (1)
Ljunggren, Östen (1)
Gisselsson, David (1)
Piotrowski, Arkadius ... (1)
Horemuzova, Eva (1)
Nordenskjöld, Magnus (1)
visa färre...
Lärosäte
Karolinska Institutet (19)
Uppsala universitet (7)
Lunds universitet (6)
Linköpings universitet (5)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy