SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kaminsky L) srt2:(2015-2019)"

Search: WFRF:(Kaminsky L) > (2015-2019)

  • Result 11-20 of 41
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Aartsen, M. G., et al. (author)
  • Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube
  • 2015
  • In: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:2, s. 022001-
  • Journal article (peer-reviewed)abstract
    • The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV-PeV) neutLrinos produced in distant astrophysical objects. A search for. greater than or similar to 100 TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to a deposited energy of 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, Phi(v) = 2.06(-0.3)(+0.4) x 10(-18) (E-v = 10(5) GeV)-2.46 +/- 0.12GeV-1 cm(-2) sr(-1) s(-1) for 25 TeV < E-v < 1.4 PeV, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90% confidence.
  •  
12.
  • Aartsen, M. G., et al. (author)
  • Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube
  • 2015
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:3
  • Journal article (peer-reviewed)abstract
    • We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
  •  
13.
  • Aartsen, M. G., et al. (author)
  • Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo
  • 2015
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 75:1
  • Journal article (peer-reviewed)abstract
    • Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e. g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube's large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution down to 1.9x10(-23) cm(3) s(-1) for a dark matter particle mass of 700-1,000 GeV and direct annihilation into nu(nu) over bar. The resulting exclusion limits come close to exclusion limits from gamma-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.
  •  
14.
  • Aartsen, M. G., et al. (author)
  • Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data
  • 2015
  • In: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 66, s. 39-52
  • Journal article (peer-reviewed)abstract
    • Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of similar to 60 TeV to the PeV-scale [1]. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separate signal from background. With both methods, the results are consistent with the background expectation with a slightly more sparse spatial distribution, corresponding to an underfluctuation. Depending on the assumed number of sources, the resulting upper limit on the flux per source in the northern hemisphere for an E-2 energy spectrum ranges from similar to 1.5. 10(-8) GeV/cm(2) s(-1), in the case of one assumed source, to similar to 4. 10(-10) GeV/cm(2) s(-1), in the case of 3500 assumed sources.
  •  
15.
  • Aartsen, M. G., et al. (author)
  • The IceProd framework : Distributed data processing for the IceCube neutrino observatory
  • 2015
  • In: Journal of Parallel and Distributed Computing. - : Elsevier BV. - 0743-7315 .- 1096-0848. ; 75, s. 198-211
  • Journal article (peer-reviewed)abstract
    • IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, identify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. This paper presents the first detailed description of IceProd, a lightweight distributed management system designed to meet these requirements. It is driven by a central database in order to manage mass production of simulations and analysis of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, HTCondor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract the details of job submission and job management from the framework. (C) 2014 Elsevier Inc. All rights reserved.
  •  
16.
  • Aalbers, J., et al. (author)
  • DARWIN : towards the ultimate dark matter detector
  • 2016
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Journal article (peer-reviewed)abstract
    • DARk matter WImp search with liquid xenoN (DARWIN(2)) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c(2), such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions,galactic axion-like particles and the neutrinoless double-beta decay of Xe-136, as well as measure the low-energy solar neutrino flux with <1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.
  •  
17.
  • Aprile, E., et al. (author)
  • The XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
18.
  • Aprile, E., et al. (author)
  • First Dark Matter Search Results from the XENON1T Experiment
  • 2017
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 119:18
  • Journal article (peer-reviewed)abstract
    • We report the first dark matter search results from XENON1T, a similar to 2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 +/- 12)-kg fiducial mass and in the [5, 40] keV(nr) energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 +/- 0.25) x 10(-4) events/(kg x day x keV(ee)), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c(2), with a minimum of 7.7 x 10(-47) cm(2) for 35-GeV/c(2) WIMPs at 90% C.L.
  •  
19.
  • Aprile, E., et al. (author)
  • Material radioassay and selection for the XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T dark matter experiment aims to detect weakly interactingmassive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
  •  
20.
  • Aprile, E., et al. (author)
  • Online Rn-222 removal by cryogenic distillation in the XENON100 experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:6
  • Journal article (peer-reviewed)abstract
    • We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view