SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Y.) "

Sökning: WFRF:(Khotyaintsev Y.)

  • Resultat 11-20 av 140
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Tang, B-B, et al. (författare)
  • Electron Mixing and Isotropization in the Exhaust of Asymmetric Magnetic Reconnection With a Guide Field
  • 2020
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate an exhaust crossing of asymmetric guide field reconnection observed by Magnetospheric Multiscale (MMS) mission at Earth's dayside magnetopause. One MMS spacecraft (MMS 4) observes multicomponent electron distributions, including two counterstreaming electron beams, while the other three MMS spacecraft, with a separation of similar to 30 km, record nearly isotropic electron distributions. As counterstreaming electrons are unstable for the electron two-stream instability, our observations suggest that the electrostatic waves generated by the fast-growing electron two-stream instability can contribute to the rapid isotropization of electron distributions in the reconnection exhaust, indicating that wave-particle interactions play an important role in electron dynamics.
  •  
12.
  • Tang, B. B., et al. (författare)
  • Secondary Magnetic Reconnection at Earth's Flank Magnetopause
  • 2021
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report local secondary magnetic reconnection at Earth's flank magnetopause by using the Magnetospheric Multiscale observations. This reconnection is found at the magnetopause boundary with a large magnetic shear between closed magnetospheric field lines and the open field lines generated by the primary magnetopause reconnection at large scales. Evidence of this secondary reconnection are presented, which include a secondary ion jet and the encounter of the electron diffusion region. Thus the observed secondary reconnection indicates a cross-scale process from a global scale to an electron scale. As the aurora brightening is also observed at the morning ionosphere, the present secondary reconnection suggests a new pathway for the entry of the solar wind into geospace, providing an important modification to the classic Dungey cycle.
  •  
13.
  • Voros, Z., et al. (författare)
  • MMS Observation of Magnetic Reconnection in the Turbulent Magnetosheath
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11442-11467
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we use the full armament of the MMS (Magnetospheric Multiscale) spacecraft to study magnetic reconnection in the turbulent magnetosheath downstream of a quasi-parallel bow shock. Contrarily to the magnetopause and magnetotail cases, only a few observations of reconnection in the magnetosheath have been reported. The case study in this paper presents, for the first time, both fluid-scale and kinetic-scale signatures of an ongoing reconnection in the turbulent magnetosheath. The spacecraft are crossing the reconnection inflow and outflow regions and the ion diffusion region (IDR). Inside the reconnection outflows D shape ion distributions are observed. Inside the IDR mixing of ion populations, crescent-like velocity distributions and ion accelerations are observed. One of the spacecraft skims the outer region of the electron diffusion region, where parallel electric fields, energy dissipation/conversion, electron pressure tensor agyrotropy, electron temperature anisotropy, and electron accelerations are observed. Some of the difficulties of the observations of magnetic reconnection in turbulent plasma are also outlined.
  •  
14.
  • Yordanova, Emiliya, et al. (författare)
  • Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:12, s. 5969-5978
  • Tidskriftsartikel (refereegranskat)abstract
    • Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
  •  
15.
  • Zhang, L. Q., et al. (författare)
  • MMS Observation on the Cross-Tail Current Sheet Roll-up at the Dipolarization Front
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform a case study on the evolution of the current sheet in different regions around the dipolarization front (DF), including magnetic-dip preceding the DF, front at the DF, and magnetic pileup region (MPR) behind the DF based on magnetospheric multiscale (MMS) observation on July 31, 2017. In this event, MMS1 stays inside the current sheet during the whole bursty bulk flow (BBF) interval. Our analysis reveals that the cross-tail current sheet at the DF is rolled up, signified by the depression (-V-z/-B-z) at the dip and elevation (+V-z/+B-z) at the front. The minimum variance analysis on the magnetic field method is applied to obtain the normal direction of the current sheet. The result confirms the roll-up, that is, downward at the depressed current sheet and upward at the elevated current sheet. The current sheet roll-up at the DF is asymmetric, with steeper elevation than depression. The elevation angle of the elevated current sheet is evaluated to be similar to 30 degrees. Strong duskward and predominantly perpendicular J spike (similar to 90 nA/m(2)) concentrate at the interface between the dip and the front. The strength of the current of the J-spike is about nine/three times the current at the dip/front. The front is characterized by positive E center dot J. In the dip/MPR, no such preference is seen. Ion/Electron pitch angle distributions exhibit significant and different evolutions in the roll-up current sheet from dip to front, including their energy-dependence and distributions. Finally, the roll-up current sheet could decelerate BBF and change the flow structure. The potential significance of the roll-up current sheet on BBF evolution is emphasized.
  •  
16.
  • Zhou, M., et al. (författare)
  • Sub-ion-scale Dynamics of the Ion Diffusion Region in the Magnetotail : MMS Observations
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 124:10, s. 7898-7911
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reports magnetospheric multiscale (MMS) observations of the sub-ion-scale dynamics within the ion diffusion region (IDR) in the Earth's magnetotail. MMS crossed the IDR from the southern to the northern hemisphere, at about two ion inertial length earthward of the X line with a small guide field. Electrons were anisotropic in the inflow region of the IDR and turned into isotropic within the IDR. The isotropization of the electrons was probably due to the pitch angle scattering in highly curved magnetic field lines. We suggest that the thickness of the electron isotropic region strongly depends on the horizontal distance to the X line. The out-of-plane current bifurcated in the IDR. It peaked at the boundaries between the inflow and outflow electrons around the separatrices. Magnetic energy conversion and dissipation predominantly occurred at the peak of the out-of-plane current instead of at the neutral sheet center where B-L = 0. Both the energy dissipation and normal electric field E-N exhibited evident asymmetry with respect to the neutral sheet. The energy dissipation was larger around the northern separatrix than around the southern separatrix. The electric field E-N showed a tripolar variation across the neutral sheet, that is, a unipolar E-N around the southern separatrix and a bipolar E-N around the northern separatrix. The reasons and implications of these asymmetries are discussed.
  •  
17.
  • Alqeeq, S. W., et al. (författare)
  • Investigation of the homogeneity of energy conversion processes at dipolarization fronts from MMS measurements
  • 2022
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J & BULL; E > 0) ahead or at the DF, whereas it is the opposite (J & BULL; E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J & BULL; E & PRIME; < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  •  
18.
  • André, Mats, et al. (författare)
  • Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause
  • 2016
  • Ingår i: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:13, s. 6705-6712
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohm's law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the vxB drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
  •  
19.
  • Breuillard, H., et al. (författare)
  • New Insights into the Nature of Turbulence in the Earth's Magnetosheath Using Magnetospheric MultiScale Mission Data
  • 2018
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 859:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Earth's magnetosheath, which is characterized by highly turbulent fluctuations, is usually divided into two regions of different properties as a function of the angle between the interplanetary magnetic field and the shock normal. In this study, we make use of high-time resolution instruments on board the Magnetospheric MultiScale spacecraft to determine and compare the properties of subsolar magnetosheath turbulence in both regions, i. e., downstream of the quasi-parallel and quasi-perpendicular bow shocks. In particular, we take advantage of the unprecedented temporal resolution of the Fast Plasma Investigation instrument to show the density fluctuations down to sub-ion scales for the first time. We show that the nature of turbulence is highly compressible down to electron scales, particularly in the quasi-parallel magnetosheath. In this region, the magnetic turbulence also shows an inertial (Kolmogorov-like) range, indicating that the fluctuations are not formed locally, in contrast with the quasi-perpendicular magnetosheath. We also show that the electromagnetic turbulence is dominated by electric fluctuations at sub-ion scales (f > 1Hz) and that magnetic and electric spectra steepen at the largest-electron scale. The latter indicates a change in the nature of turbulence at electron scales. Finally, we show that the electric fluctuations around the electron gyrofrequency are mostly parallel in the quasi-perpendicular magnetosheath, where intense whistlers are observed. This result suggests that energy dissipation, plasma heating, and acceleration might be driven by intense electrostatic parallel structures/waves, which can be linked to whistler waves.
  •  
20.
  • Breuillard, H., et al. (författare)
  • The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission
  • 2018
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 123:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 140

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy