SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knowles R) srt2:(2010-2014)"

Sökning: WFRF:(Knowles R) > (2010-2014)

  • Resultat 11-20 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Ingelsson, Erik, et al. (författare)
  • Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans
  • 2010
  • Ingår i: Diabetes. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Konferensbidrag (refereegranskat)abstract
    • OBJECTIVE-Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS-We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS-The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS-Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. Diabetes 59:1266-1275, 2010
  •  
12.
  • Ingelsson, Erik, et al. (författare)
  • Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 59:5, s. 1266-1275
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 x 10(-71)). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Dimas, Antigone S, et al. (författare)
  • Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:6, s. 2158-2171
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
  •  
19.
  • Furberg, Helena, et al. (författare)
  • Genome-wide meta-analyses identify multiple loci associated with smoking behavior
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 42:5, s. 134-441
  • Tidskriftsartikel (refereegranskat)abstract
    • Consistent but indirect evidence has implicated genetic factors in smoking behavior1,2. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n > 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], b = 1.03, standard error (s.e.) = 0.053, beta = 2.8 x 10(-73)). Two 10q25 SNPs (rs1329650[G], b = 0.367, s. e. = 0.059, beta = 5.7 x 10(-10); and rs1028936[A], b = 0.446, s. e. = 0.074, beta = 1.3 x 10(-9)) and one 9q13 SNP in EGLN2 (rs3733829[G], b = 0.333, s. e. = 0.058, P = 1.0 x 10(-8)) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 x 10(-8)). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 x 10(-8)) was significantly associated with smoking cessation.
  •  
20.
  • Knowles, C H, et al. (författare)
  • Quantitation of cellular components of the enteric nervous system in the normal human gastrointestinal tract - report on behalf of the Gastro 2009 International Working Group.
  • 2011
  • Ingår i: Neurogastroenterology and Motility. - : Wiley. - 1350-1925 .- 1365-2982. ; 23:2, s. 115-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Patients with gastrointestinal neuromuscular diseases may undergo operative procedures that yield tissue appropriate to diagnosis of underlying neuromuscular pathology. Critical to accurate diagnosis is the determination of limits of normality based on the study of control human tissues. Although robust diagnostic criteria exist for many qualitative alterations in the neuromuscular apparatus, these do not include quantitative values due to lack of adequate control data. Purpose The aim of this report was to summarize all relevant available published quantitative data for elements of the human enteric nervous system (neuronal cell bodies, glial cells, and nerve fibers) from the perspective of the practicing pathologist. Forty studies meeting inclusion criteria were systematically reviewed with data tabulated in detail and discussed in the context of methodological variations and limitations. The results reveal a lack of concordance between observations of different investigators resulting in data insufficient to produce robust normal ranges. This diversity highlights the need to standardize the way pathologists collect, process, and quantitate neuronal and glial elements in enteric neuropathologic samples, as suggested by recent international guidelines on gastrointestinal neuromuscular pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 30
Typ av publikation
tidskriftsartikel (25)
konferensbidrag (2)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Knowles, Joshua W. (11)
Assimes, Themistocle ... (9)
Quertermous, Thomas (9)
McCarthy, Mark I (8)
Boehnke, Michael (8)
Mohlke, Karen L (8)
visa fler...
Ingelsson, Erik (8)
Tuomilehto, Jaakko (8)
Jackson, Anne U. (8)
Groop, Leif (7)
Stefansson, Kari (7)
Collins, Francis S. (7)
Salomaa, Veikko (6)
Melander, Olle (6)
Deloukas, Panos (6)
Wareham, Nicholas J. (6)
Kuusisto, Johanna (6)
Laakso, Markku (6)
Thorleifsson, Gudmar (6)
Knowles, JA (6)
Barroso, Ines (6)
Kovacs, Peter (6)
Voight, Benjamin F. (6)
Iribarren, Carlos (6)
Prokopenko, Inga (6)
Frayling, Timothy M (6)
Pato, CN (5)
Pato, MT (5)
Soranzo, Nicole (5)
Langenberg, Claudia (5)
Hunter, David J (5)
Thorsteinsdottir, Un ... (5)
Neale, BM (5)
Wichmann, H. Erich (5)
Samani, Nilesh J. (5)
Walker, Mark (5)
Elosua, Roberto (5)
Maier, W (5)
Posthuma, D (5)
Smit, JH (5)
Hofman, Albert (5)
O'Donnell, Christoph ... (5)
Boerwinkle, Eric (5)
Hengstenberg, Christ ... (5)
Absher, Devin (5)
Meigs, James B. (5)
Hivert, Marie-France (5)
Hao, Ke (5)
Bonnycastle, Lori L. (5)
Narisu, Narisu (5)
visa färre...
Lärosäte
Karolinska Institutet (19)
Uppsala universitet (10)
Lunds universitet (10)
Göteborgs universitet (8)
Umeå universitet (3)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (17)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy