SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahesmaa Riitta) "

Sökning: WFRF:(Lahesmaa Riitta)

  • Resultat 11-20 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Hamalainen, Sanna, et al. (författare)
  • Coxsackievirus B1 Reveals Strain Specific Differences in Plasmacytoid Dendritic Cell Mediated Immunogenicity
  • 2014
  • Ingår i: Journal of Medical Virology. - : Wiley. - 0146-6615 .- 1096-9071. ; 86:8, s. 1412-1420
  • Tidskriftsartikel (refereegranskat)abstract
    • Enterovirus infections are usually mild but can also cause severe illnesses and play a role in chronic diseases, such as cardiomyopathies and type 1 diabetes. Host response to the invading virus can markedly modulate the course of the infection, and this response varies between individuals due to the polymorphism of immune response genes. However, it is currently not known if virus strains also differ in their ability to stimulate the host immune system. Coxsackievirus B1 (CBV1) causes severe epidemics in young infants and it has recently been connected with type 1 diabetes in seroepidemiological studies. This study evaluated the ability of different field isolates of CBV1 to induce innate immune responses in PBMCs. CBV1 strains differed markedly in their capacity to induce innate immune responses. Out of the 18 tested CBV1 strains two induced exceptionally strong alpha interferon (IFN-alpha) response in PBMC cultures. The responding cell type was found to be the plasmacytoid dendritic cell. Such a strong innate immune response was accompanied by an up-regulation of several other immune response genes and secretion of cytokines, which modulate inflammation, and adaptive immune responses. These results suggest that enterovirus-induced immune activation depends on the virus strain. It is possible that the immunotype of the virus modulates the course of the infection and plays a role in the pathogenesis of chronic immune-mediated enterovirus diseases.  
  •  
12.
  • Jaatinen, Taina, et al. (författare)
  • Total C4B deficiency due to gene deletion and gene conversion in a patient with severe infections
  • 2003
  • Ingår i: Clinical and Diagnostic Laboratory Immunology. - 1071-412X. ; 10:2, s. 195-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Deficiencies of the early components of the classical complement pathway impair the actions of innate and humoral immunity and may lead to increased susceptibility to infections. We have studied the genetic basis of total C4B deficiency in a Finnish patient with recurrent meningitis, chronic fistulas and abscesses. The maternal chromosome carried a four-gene deletion including the C4B gene, and a conversion from C4B to C4A gene was found on the paternal chromosome resulting in complete deficiency of C4B. In the converted C4A gene, mutation screening did not reveal any amino acid changes or prominent mutations, yet a large number of nucleotide variations were found. Further, the patient was heterozygous for structural deficiency of mannan binding lectin (MBL) associating with medium levels of serum MBL. Our data provides new information on the genetic instability of the C4 gene region, and on the association of homozygous C4B deficiency and variant MBL genotype with increased susceptibility to recurrent and chronic infections. Importantly, plasma therapy induced a prompt clinical cure with long-term effects.
  •  
13.
  • Kallionpää, Henna, et al. (författare)
  • Early Detection of Peripheral Blood Cell Signature in Children Developing beta-Cell Autoimmunity at a Young Age
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 68:10, s. 2024-2034
  • Tidskriftsartikel (refereegranskat)abstract
    • The appearance of type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals. However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction. Here we report the mRNA sequencing-based analysis of 306 samples including fractionated samples of CD4(+) and CD8(+) T cells as well as CD4(-)CD8(-) cell fractions and unfractionated peripheral blood mononuclear cell samples longitudinally collected from seven children who developed beta-cell autoimmunity (case subjects) at a young age and matched control subjects. We identified transcripts, including interleukin 32 (IL32), that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA sequencing studies revealed that high IL32 in case samples was contributed mainly by activated T cells and NK cells. Further, we showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and beta-cells, respectively. The results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D.
  •  
14.
  • Laajala, Essi, et al. (författare)
  • Permutation-based significance analysis reduces the type 1 error rate in bisulfite sequencing data analysis of human umbilical cord blood samples
  • 2022
  • Ingår i: Epigenetics. - : Taylor & Francis. - 1559-2294 .- 1559-2308. ; 17:12, s. 1608-1627
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation patterns are largely established in-utero and might mediate the impacts of in-utero conditions on later health outcomes. Associations between perinatal DNA methylation marks and pregnancy-related variables, such as maternal age and gestational weight gain, have been earlier studied with methylation microarrays, which typically cover less than 2% of human CpG sites. To detect such associations outside these regions, we chose the bisulphite sequencing approach. We collected and curated clinical data on 200 newborn infants; whose umbilical cord blood samples were analysed with the reduced representation bisulphite sequencing (RRBS) method. A generalized linear mixed-effects model was fit for each high coverage CpG site, followed by spatial and multiple testing adjustment of P values to identify differentially methylated cytosines (DMCs) and regions (DMRs) associated with clinical variables, such as maternal age, mode of delivery, and birth weight. Type 1 error rate was then evaluated with a permutation analysis. We discovered a strong inflation of spatially adjusted P values through the permutation analysis, which we then applied for empirical type 1 error control. The inflation of P values was caused by a common method for spatial adjustment and DMR detection, implemented in tools comb-p and RADMeth. Based on empirically estimated significance thresholds, very little differential methylation was associated with any of the studied clinical variables, other than sex. With this analysis workflow, the sex-associated differentially methylated regions were highly reproducible across studies, technologies, and statistical models.
  •  
15.
  • Lonnberg, Tapio, et al. (författare)
  • T-cell activation induces selective changes of cellular lipidome
  • 2013
  • Ingår i: Frontiers in Bioscience (Elite Edition). - : Frontiers in Bioscience. - 1945-0494 .- 1945-0508. ; 5, s. 558-573
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of naïve T helper cells by presentation of cognate antigen initiates a complex intracellular signaling process leading to development of functionally active effector cell population. The switch from quiescent naïve state to activated state involves a profound change of cellular metabolism, required for completion of multiple rounds of proliferation. Using ultra performance liquid chromatography mass spectrometry, we analyzed how this change is reflected on the cellular lipid composition in human umbilical cord blood T-cells. We found that considerable concentration changes take place during the first 72 hours after T-cell receptor activation, correlating with first rounds of activation-induced cell division. Most importantly, composition of phosphatidylcholines and phosphatidylethanolamines exhibited consistent trend towards shorter and more saturated molecular species. Together with related transcriptomics data, the results clearly suggested induction of de novofatty acid synthesis and accumulation of endogenously synthesized fatty acids into the cellular membranes, leading to partial remodeling of the cellular lipidome in the newly developed effector cell population.
  •  
16.
  • Moulder, Robert, et al. (författare)
  • A comparative evaluation of software for the analysis of liquid chromatography-tandem mass spectrometry data from isotope coded affinity tag experiments
  • 2005
  • Ingår i: Proteomics. - : Wiley-VCH Verlagsgesellschaft. - 1615-9853 .- 1615-9861. ; 5:11, s. 2748-2760
  • Tidskriftsartikel (refereegranskat)abstract
    • The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.
  •  
17.
  • Moulder, Robert, et al. (författare)
  • Quantitative proteomics analysis of the nuclear fraction of human CD4+ cells in the early phases of IL-4-induced Th2 differentiation
  • 2010
  • Ingår i: Molecular & Cellular Proteomics. - : American Society for Biochemistry and Molecular Biology. - 1535-9476 .- 1535-9484. ; 9:9, s. 1937-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • We used stable isotope labeling with 4-plex iTRAQ (isobaric tags for relative and absolute quantification) reagents and LC-MS/MS to investigate proteomic changes in the nucleus of activated human CD4(+) cells during the early stages of Th2 cell differentiation. The effects of IL-4 stimulation upon activated naïve CD4(+) cells were measured in the nuclear fractions from 6 and 24 h in three biological replicates, each using pooled cord blood samples derived from seven or more individuals. In these analyses, in the order of 800 proteins were detected with two or more peptides and quantified in three biological replicates. In addition to consistent differences observed with the nuclear localization/expression of established human Th2 and Th1 markers, there were changes that suggested the involvement of several proteins either only recently reported or otherwise not known in this context. These included SATB1 and among the novel changes detected and validated an IL-4-induced increase in the level of YB1. This unique data set from human cord blood CD4(+) T cells details an extensive list of protein determinations that compares with and complements previous data determined from the Jurkat cell nucleus.
  •  
18.
  • Rundquist, Olof, 1991- (författare)
  • Multi-omic time-series analysis of T-cells as a model for identification of biomarkers, treatments and upstream disease regulators
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • CD4+ T-cell function and their process of differentiation is a central piece of the puzzle in a multitude of diseases. CD4+ T-cells are part of the adaptive immune system and function by directing other immune cells to the site of infection and instructing B-cells to produce antibodies, among many other functions. CD4+ T-cells may differentiate into several different sub-types, such as T-helper 1, 2 and 17, with differing functions within the immune system. T-helper 1 (Th1) cells are most closely associated with the elimination of viral infections but are also associated with autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). T-cells develop in the thymus first as double-negative T-cells, that express neither CD4 nor CD8, going through multiple development stages before becoming double-positive T-cell that express both CD4 and CD8, before eventually giving rise to single positive CD4+ and CD8+ T-cells. This process of development is under tight control and if this control fails, cancer may result. Once CD4+ T-cells are fully developed, they may specialize as outlined above and if said process is not properly controlled, autoimmunity may result. As such, the proper understanding of these control mechanisms is of great importance for the understanding of diseases of the immune system and the discovery of biomarkers and treatments against said diseases. These control processes are often studied in a singular fashion using one omic technique, e.g., RNA sequencing (RNA-seq), with the assumption that a signal in one omic layer will be reflected in another. Recent studies attempting to integrate multiple omics have however cast doubt on this and it is becoming increasingly apparent that to gain a complete understanding of a system, the system needs to be studied at multiple levels of regulation, i.e., multiple omics.The aim of this thesis was to use multi-omics to investigate the development and differentiation process of CD4+ T-helper cells and relate it to disease mechanisms. To start, we studied T-cell development through the model of T-cell acute lymphoblastic leukaemia (T-ALL). More specifically, we studied the TET2 gene and investigated its importance in T-ALL for treatment susceptibility and mechanism in vitro. TET2 is a demethylase and functions through the removal of cytosine methylation on the DNA, a marker of gene silencing. Through treatment with decitabine, an inhibitor of DNA-methylation, and Vitamin C, a co-factor for TET2, we showed that TET2 deficient cancer cell lines were more vulnerable to treatment targeting DNA methylation and investigated the mechanistic effects of said treatment by RNA sequencing. We then moved on to study primary human naïve CD4+ T-cells and their differentiation into Th1-cells. First, we focused on T-cell activation and its importance to MS to understand the role of T-cells in mediating the lowered disease activity usually observed during pregnancy in MS. This showed that the major pregnancy hormone progesterone significantly dampens T-cell activation, providing a possible explanation for the beneficial effects of pregnancy on MS. Then, using ATAC sequencing (ATAC-seq), RNA-seq and proteomics we studied Th1-differentiation as a time series to elucidate regulatory events throughout the differentiation process and to study their implications for MS with the inclusion of progesterone treatment.  The integration of several omic techniques presents unique challenges as one does not necessarily directly translate to the other. As such, we first focused on the integration of RNA-seq and proteomics by designing a model for the prediction of protein abundance from RNA-seq and validated it through biomarker discovery. Next, we focused on the integration of ATAC-seq and RNA-seq using correlation between time series of the two techniques. This thesis provides a thorough investigation of Th1-cell differentiation and its potential involvement in disease. Time series datasets were produced to study gene regulation (ATAC-seq), gene expression (RNA-seq) and protein expression (mass spectrometry) and the work focused on their integration. This profoundly showed that through combining multiple omic techniques it was possible to gain new insights that were not possible to discover with one or the other. Multi-omic analyses are becoming more and more common in medicine today as their power to produce new insight into the complexity of complex diseases is being increasingly recognized. As such, this work forms an important foundation for future discovery of biomarkers and treatments in such diseases.
  •  
19.
  • Sen, Partho, et al. (författare)
  • Quantitative analysis of human CD4+T-cell differentiation reveals subset-specific regulation of glycosphingolipid pathways
  • 2021
  • Ingår i: European Journal of Immunology. - : John Wiley & Sons. - 0014-2980 .- 1521-4141. ; 51:Suppl. 1, s. 237-237
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • T‐cells are sentinels of adaptive immune responses. T‐cell activation, proliferation and differentiation involves metabolic reprogramming involving the interplay of genes, proteins and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T‐cell subsets (Th1, Th2, Th17 and iTregs). We combined genome‐scale metabolic modeling, gene expression data, targeted and non‐targeted lipidomics experiments, together with in vitro gene knockdown experiments and showed that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we identified and confirmed the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiated the requirement of serine palmitoyl transferase, a de novo sphingolipid pathway in the expression of proinflammatory cytokine (IL17A and IL17F) by Th17 cells. Our findings may provide a comprehensive resource for identifying CD4+ T‐cell‐specific targets for their selective manipulation under disease conditions, particularly, diseases characterized by an imbalance of Th17/nTreg cells. 
  •  
20.
  • Sen, Partho, 1983-, et al. (författare)
  • Quantitative genome-scale metabolic modeling of human CD4+ T cell differentiation reveals subset-specific regulation of glycosphingolipid pathways
  • 2021
  • Ingår i: Cell Reports. - : Cell Press. - 2211-1247. ; 37:6
  • Tidskriftsartikel (refereegranskat)abstract
    • T cell activation, proliferation, and differentiation involve metabolic reprogramming resulting from the interplay of genes, proteins, and metabolites. Here, we aim to understand the metabolic pathways involved in the activation and functional differentiation of human CD4+ T cell subsets (T helper [Th]1, Th2, Th17, and induced regulatory T [iTreg] cells). Here, we combine genome-scale metabolic modeling, gene expression data, and targeted and non-targeted lipidomics experiments, together with in vitro gene knockdown experiments, and show that human CD4+ T cells undergo specific metabolic changes during activation and functional differentiation. In addition, we confirm the importance of ceramide and glycosphingolipid biosynthesis pathways in Th17 differentiation and effector functions. Through in vitro gene knockdown experiments, we substantiate the requirement of serine palmitoyltransferase (SPT), a de novo sphingolipid pathway in the expression of proinflammatory cytokines (interleukin [IL]-17A and IL17F) by Th17 cells. Our findings provide a comprehensive resource for selective manipulation of CD4+ T cells under disease conditions characterized by an imbalance of Th17/natural Treg (nTreg) cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 20
Typ av publikation
tidskriftsartikel (19)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Lahesmaa, Riitta (19)
Orešič, Matej, 1967- (15)
Rasool, Omid (8)
Knip, Mikael (7)
Elo, Laura L. (7)
Lähdesmäki, Harri (6)
visa fler...
Aittokallio, Tero (5)
Veijola, Riitta (5)
Toppari, Jorma (5)
Hyöty, Heikki (5)
Ilonen, Jorma (5)
Kalim, Ubaid Ullah (4)
Grönroos, Toni (4)
Hyötyläinen, Tuulia, ... (3)
Andrabi, Syed Bilal ... (3)
Khan, Mohd Moin (3)
Buchacher, Tanja (3)
Sen, Partho (3)
Alves, Marina Amaral (2)
Frisk, Gun (2)
Truedsson, Lennart (1)
Sund, Malin (1)
Otonkoski, Timo (1)
Sormunen, Raija (1)
Mattila, Ismo (1)
Seppänen-Laakso, Tuu ... (1)
Salmi, Jussi (1)
Lamichhane, Santosh (1)
Sen, Partho, 1983- (1)
Ammunét, Tea (1)
Oberste, M. Steven (1)
Sioofy-Khojine, Amir ... (1)
Hyoty, Heikki (1)
Palani, Senthil (1)
Khan, Meraj Hasan (1)
Fagersund, Jimmy (1)
Orpana, Julius (1)
Paulin, Niklas (1)
Batkulwar, Kedar (1)
Junttila, Sini (1)
Toikka, Lea (1)
Kumpulainen, Venla (1)
Tuomisto, Johanna E. ... (1)
Sinha, Rahul (1)
Marson, Alexander (1)
Simell, Olli (1)
Gustafsson, Mika, As ... (1)
Chandra, Vikash (1)
Simell, Tuula (1)
Lokki, Marja-Liisa (1)
visa färre...
Lärosäte
Örebro universitet (15)
Uppsala universitet (2)
Umeå universitet (1)
Linköpings universitet (1)
Lunds universitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy