SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Movérare Skrtic Sofia) srt2:(2020-2024)"

Sökning: WFRF:(Movérare Skrtic Sofia) > (2020-2024)

  • Resultat 11-20 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Moverare-Skrtic, Sofia, et al. (författare)
  • B4GALNT3 regulates glycosylation of sclerostin and bone mass
  • 2023
  • Ingår i: eBioMedicine. - 2352-3964. ; 91
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). Methods To determine if B4GALNT3 is the causal gene, B4galnt3 / mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. Findings B4galnt3 / mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3 / mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. Interpretation B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. Funding Found in acknowledgements.
  •  
12.
  • Nethander, Maria, 1980, et al. (författare)
  • An atlas of genetic determinants of forearm fracture.
  • 2023
  • Ingår i: Nature genetics. - : Springer Nature. - 1546-1718 .- 1061-4036. ; 55:11, s. 1820-1830
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
  •  
13.
  • Nilsson, Karin H., et al. (författare)
  • Estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other
  • 2022
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 322:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.
  •  
14.
  • Nilsson, Karin H., et al. (författare)
  • Osteocyte- and late osteoblast-derived NOTUM reduces cortical bone mass in mice
  • 2021
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 320:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on nonvertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1-expressing osteocytes and late osteoblasts (Dmp1-creNotum(flox/flox) mice). We observed that the Dmp1-creNotum(flox/flox) mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur but no change in trabecular bone volume fraction in femur or in the lumbar vertebrae L5 in Dmp1-creNotum(flox/flox) mice as compared with control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/ late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce non vertebral fracture risk. NEW & NOTEWORTHY NOTUM produced by osteoblasts is known to regulate cortical bone mass. Our new findings show that NOTUM specifically derived by DMP1-expressing osteocytes and late osteoblasts regulates cortical bone mass and not trabecular bone mass.
  •  
15.
  • Nilsson, Karin H., et al. (författare)
  • RSPO3 is important for trabecular bone and fracture risk in mice and humans
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here, the authors show that RSPO3 exerts an important role for vertebral trabecular bone mass and bone strength in mice and fracture risk in humans. With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.
  •  
16.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Mild stimulatory effect of a probiotic mix on bone mass when treatment is initiated 1.5 weeks after ovariectomy in mice
  • 2021
  • Ingår i: American Journal of Physiology-Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 320:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies in humans and rodents show that probiotic bacteria can protect from bone loss caused by sex steroid deficiency. We showed earlier that a mixture of three probiotic bacteria, Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312, and DSM 15313 (L. mix), protects mice from ovariectomy (ovx)-induced bone loss when treatment was started 2 wk before sham and ovx surgery. In addition, the same probiotic treatment protected against lumbar spine bone loss in early postmenopausal women. In the present study, we wanted to evaluate the therapeutic potential of L. mix by starting treatment 1.5 wk after ovx when most of the rapid bone loss as a result of estrogen deficiency has already occurred. Treatment with L. mix for 5.5 wk increased the trabecular thickness but not the trabecular number in the proximal metaphyseal region of tibia compared with vehicle treatment. Cortical thickness and cortical area of the middiaphyseal part of the tibia were significantly decreased in ovx mice but not in L. mix-treated ovx mice. The bone-protective effects of L. mix in ovx mice were associated with a protection against ovx-induced reduction of the frequency of regulatory T-cells and of the expression of Tgfb in the bone marrow. In conclusion, the probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy. NEW & NOTEWORTHY The probiotic L. mix exerted a mild stimulatory effect on trabecular and cortical bone width when treatment is initiated 1.5 wk after ovariectomy in mice. This effect was associated with effects on bone-protecting regulatory T-cells. The results suggest that L. mix may exert beneficial effects on bone mass when treatment is started after ovariectomy.
  •  
17.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Phosphorylation site S122 in estrogen receptor α has a tissue-dependent role in female mice
  • 2020
  • Ingår i: FASEB Journal. - 0892-6638 .- 1530-6860. ; 34, s. 15991-16002
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.
  •  
18.
  • Ohlsson, Claes, 1965, et al. (författare)
  • The effects of estradiol are modulated in a tissue-specific manner in mice with inducible inactivation of ERα after sexual maturation.
  • 2020
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 318:5, s. 646-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse models with lifelong inactivation of estrogen receptor α (ERα) show that ERα is the main mediator of estrogenic effects in bone, thymus, uterus, and fat. However, ERα inactivation early in life may cause developmental effects that confound the adult phenotypes. To address the specific role of adult ERα expression for estrogenic effects in bone and other non-skeletal tissues, we established a tamoxifen-inducible ERα-inactivated model by crossing CAG-Cre-ER and ERαflox/flox mice. Tamoxifen-induced ERα-inactivation after sexual maturation substantially reduced ERα mRNA levels in cortical bone, trabecular bone, thymus, uterus, gonadal fat, and hypothalamus, in CAG-Cre-ERαflox/flox (inducible ERαKO) compared to ERαflox/flox (control) mice. 17β-estradiol (E2) treatment increased trabecular bone volume fraction (BV/TV), cortical bone area and uterine weight, while it reduced thymus weight and fat mass in ovariectomized control mice. The estrogenic responses were substantially reduced in inducible ERαKO mice compared to control mice on BV/TV (-67%), uterine weight (-94%), thymus weight (-70%), and gonadal fat mass (-94%). In contrast, the estrogenic response on cortical bone area was unaffected in inducible ERαKO compared to control mice. In conclusion, using an inducible ERαKO model, not confounded by lack of ERa during development, we demonstrate that ERα expression in sexually mature female mice is required for normal E2 responses in most, but not all tissues. The finding that cortical, but not trabecular bone, responds normally to E2 treatment in inducible ERαKO mice strengthens the idea of cortical and trabecular bone being regulated by estrogen via different mechanisms.
  •  
19.
  • Svensson, Johan, 1964, et al. (författare)
  • Bone-Derived IGF-I Regulates Radial Bone Growth in Adult Male Mice
  • 2023
  • Ingår i: Endocrinology. - 0013-7227. ; 164:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin-like growth factor-I (IGF-I) levels, which are reduced by age, and cortical bone dimensions are major determinants of fracture risk in elderly subjects. Inactivation of liver-derived circulating IGF-I results in reduced periosteal bone expansion in young and older mice. In mice with lifelong depletion of IGF-I in osteoblast lineage cells, the long bones display reduced cortical bone width. However, it has not previously been investigated whether inducible inactivation of IGF-I locally in bone in adult/old mice affects the bone phenotype. Adult tamoxifen-inducible inactivation of IGF-I using a CAGG-CreER mouse model (inducible IGF-I-KO mice) substantially reduced IGF-I expression in bone (-55%) but not in liver. Serum IGF-I and body weight were unchanged. We used this inducible mouse model to assess the effect of local IGF-I on the skeleton in adult male mice, avoiding confounding developmental effects. After tamoxifen-induced inactivation of the IGF-I gene at 9 months of age, the skeletal phenotype was determined at 14 months of age. Computed tomography analyses of tibia revealed that the mid-diaphyseal cortical periosteal and endosteal circumferences and calculated bone strength parameters were decreased in inducible IGF-I-KO mice compared with controls. Furthermore, 3-point bending showed reduced tibia cortical bone stiffness in inducible IGF-I-KO mice. In contrast, the tibia and vertebral trabecular bone volume fraction was unchanged. In conclusion, inactivation of IGF-I in cortical bone with unchanged liver-derived IGF-I in older male mice resulted in reduced radial growth of cortical bone. This suggests that not only circulating IGF-I but also locally derived IGF-I regulates the cortical bone phenotype in older mice.
  •  
20.
  • Törnqvist, Anna E, et al. (författare)
  • Induced inactivation of Wnt16 in young adult mice has no impact on osteoarthritis development.
  • 2022
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 17:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is a common disorder and a major cause of disability in the elderly population. WNT16 has been suggested to play important roles in joint formation, bone homeostasis and OA development, but the mechanism of action is not clear. Transgenic mice lacking Wnt16 expression (Wnt16-/-) have a more severe experimental OA than control mice. In addition, Wnt16-/- mice have a reduced cortical thickness and develop spontaneous fractures. Herein, we have used Cre-Wnt16flox/flox mice in which Wnt16 can be conditionally ablated at any age through tamoxifen-inducible Cre-mediated recombination. Wnt16 deletion was induced in 7-week-old mice to study if the Cre-Wnt16flox/flox mice have a more severe OA phenotype after destabilizing the medial meniscus (DMM surgery) than littermate controls with normal Wnt16 expression (Wnt16flox/flox). WNT16 deletion was confirmed in articular cartilage and cortical bone in Cre-Wnt16flox/flox mice, shown by immunohistochemistry and reduced cortical bone area compared to Wnt16flox/flox mice. After DMM surgery, there was no difference in OA severity in the articular cartilage in the knee joint between the Cre-Wnt16flox/flox and Wnt16flox/flox mice in neither female nor male mice. In addition, there was no difference in osteophyte size in the DMM-operated tibia between the genotypes. In conclusion, inactivation of Wnt16 in adult mice do not result in a more severe OA phenotype after DMM surgery. Thus, presence of WNT16 in adult mice does not have an impact on experimental OA development. Taken together, our results from Cre-Wnt16flox/flox mice and previous results from Wnt16-/- mice suggest that WNT16 is crucial during synovial joint establishment leading to limited joint degradation also later in life, after onset of OA. This may be important when developing new therapeutics for OA treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 21
Typ av publikation
tidskriftsartikel (21)
Typ av innehåll
refereegranskat (21)
Författare/redaktör
Movérare-Skrtic, Sof ... (21)
Ohlsson, Claes, 1965 (18)
Lerner, Ulf H (9)
Lagerquist, Marie K (6)
Sjögren, Klara, 1970 (6)
Farman, Helen H., 19 ... (5)
visa fler...
Engdahl, Cecilia, 19 ... (4)
Westerlund, Anna, 19 ... (4)
Nethander, Maria, 19 ... (3)
Törnqvist, Anna E (3)
Islander, Ulrika, 19 ... (3)
Lindholm, Catharina, ... (2)
Windahl, Sara H, 197 ... (2)
Levin, E (2)
Andersson, Annica, 1 ... (2)
Grahnemo, Louise (2)
Lagerquist, Marie (2)
Tuckermann, J (2)
Tuomi, Tiinamaija (1)
Lorentzon, Mattias, ... (1)
März, Winfried (1)
Nilsson, Sten (1)
Poutanen, Matti (1)
Zheng, Jie (1)
Svensson, Johan, 196 ... (1)
Lehtimaki, T. (1)
Mäkitie, Outi (1)
Stefansson, Kari (1)
Koskela, Antti (1)
Tuukkanen, Juha (1)
Brunak, Søren (1)
Langhammer, Arnulf (1)
Andlauer, Till F M (1)
Voelkl, J (1)
Erikstrup, Christian (1)
Bernardi, Angelina I (1)
Chambon, Pierre (1)
Engström-Ruud, Linda (1)
Müller-Myhsok, Bertr ... (1)
Gustafsson, Jan-Åke (1)
Smith, George Davey (1)
Lu, Tianyuan (1)
Gabrielsen, Maiken E (1)
Hveem, Kristian (1)
Richards, J Brent (1)
Coward, Eivind (1)
Pedersen, Ole Birger ... (1)
Pettersson-Kymmer, U ... (1)
Richard, Daniel (1)
Tobias, Jonathan H. (1)
visa färre...
Lärosäte
Göteborgs universitet (21)
Karolinska Institutet (4)
Umeå universitet (3)
Lunds universitet (1)
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy