SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nordberg Karlsson Eva) "

Sökning: WFRF:(Nordberg Karlsson Eva)

  • Resultat 11-20 av 172
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Schmitz, Eva, et al. (författare)
  • Ultrasound Assisted Alkaline Pre‐treatment Efficiently Solubilises Hemicellulose from Oat Hulls
  • 2021
  • Ingår i: Waste and Biomass Valorization. - : Springer Science and Business Media LLC. - 1877-2641 .- 1877-265X. ; 12:10, s. 5371-5381
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of sustainable bioeconomies requires the utilization of new renewable biomaterials. One such material currently seen as a waste product is oat hulls. Oat hulls exhibit a great potential for the production of dietary fibres due to their exceptionally large hemicellulose content (35%). Their recalcitrant structure however requires a suitable pre-treatment method to access and process the hemicellulose. After a screening of various physical, chemical and physico-chemical pre-treatment methods, including autoclaving, ultrasonication, microwave-, deep eutectic solvents-, as well as alkaline treatments, a combined ultrasonication and alkali pre-treatment method was here found to be the most suitable. A factorial design resulted in optimized conditions of 10 min ultrasonication in water, followed by an incubation in 5 M NaOH at 80 ºC for 9 h yielding solubilisation of 72% of all hemicellulose in the hulls. The method was shown to efficiently break the ester bonds between ferulic acid and the hemicellulose main chain, contributing to its solubilisation. Graphic Abstract: [Figure not available: see fulltext.]
  •  
12.
  • Schmitz, Eva, et al. (författare)
  • Warming weathers changes the chemical composition of oat hulls
  • 2020
  • Ingår i: Plant Biology. - : Wiley. - 1438-8677 .- 1435-8603. ; 22:6, s. 1086-1091
  • Tidskriftsartikel (refereegranskat)abstract
    • The current threats of climate change are driving attention away from the petrochemical industry towards more sustainable and bio‐based production processes for fuels and speciality chemicals. These processes require suitable low‐cost starting material. One potential material assessed here is the oat hull. Its overall chemical composition has so far not been fully characterized. Furthermore, it is not known how it is affected by extreme weather events.Oat hulls (Kerstin and Galant varieties) grown during ‘normal’ weather years (2016 and 2017) are compared to the harvest of the warmer and drier year (2018). Standard methods for determination of plant chemical composition, with focus on carbohydrate composition, are utilized.Oat hulls grown in ‘normal’ weather conditions (2017) are rich in lignocellulose (84%), consisting of 35% hemicellulose, 25% lignin and 23% cellulose. Arabinoxylan was found to be the major biopolymer (32%). However, this composition is greatly influenced by weather variations during the oat growth phase. A lignocellulose reduction of 25% was recorded in the warmer and drier 2018 harvest. Additionally, a 6.6‐fold increase in starch content, a four‐fold increase in protein content and a 60% decrease in phenolic content was noted.Due to its high lignocellulose composition, with an exceptionally large hemicellulose fraction, the chemical composition of oat hulls is unique among agricultural by‐products. However, this characteristic is significantly reduced when grown in warmer and drier weather, which could compromise its suitability for use in a successful biorefinery.
  •  
13.
  • Shuoker, Bashar, et al. (författare)
  • Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucolytic human gut microbiota specialist Akkermansia muciniphila is proposed to boost mucin-secretion by the host, thereby being a key player in mucus turnover. Mucin glycan utilization requires the removal of protective caps, notably fucose and sialic acid, but the enzymatic details of this process remain largely unknown. Here, we describe the specificities of ten A. muciniphila glycoside hydrolases, which collectively remove all known sialyl and fucosyl mucin caps including those on double-sulfated epitopes. Structural analyses revealed an unprecedented fucosidase modular arrangement and explained the sialyl T-antigen specificity of a sialidase of a previously unknown family. Cell-attached sialidases and fucosidases displayed mucin-binding and their inhibition abolished growth of A. muciniphila on mucin. Remarkably, neither the sialic acid nor fucose contributed to A. muciniphila growth, but instead promoted butyrate production by co-cultured Clostridia. This study brings unprecedented mechanistic insight into the initiation of mucin O-glycan degradation by A. muciniphila and nutrient sharing between mucus-associated bacteria.
  •  
14.
  • Abou-Hachem, Maher, et al. (författare)
  • Calcium binding and thermostability of carbohydrate binding module CBM4-2 of Xyn10A from Rhodothermus marinus.
  • 2002
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 41:18, s. 5720-5729
  • Tidskriftsartikel (refereegranskat)abstract
    • Calcium binding to carbohydrate binding module CBM4-2 of xylanase 10A (Xyn10A) from Rhodothermus marinus was explored using calorimetry, NMR, fluorescence, and absorbance spectroscopy. CBM4-2 binds two calcium ions, one with moderate affinity and one with extremely high affinity. The moderate-affinity site has an association constant of (1.3 +/- 0.3) x 10(5) M(-1) and a binding enthalpy DeltaH(a) of -9.3 +/- 0.4 kJ x mol(-1), while the high-affinity site has an association constant of approximately 10(10) M(-1) and a binding enthalpy DeltaH(a) of -40.5 +/- 0.5 kJ x mol(-1). The locations of the binding sites have been identified by NMR and structural homology, and were verified by site-directed mutagenesis. The high-affinity site consists of the side chains of E11 and D160 and backbone carbonyls of E52 and K55, while the moderate-affinity site comprises the side chain of D29 and backbone carbonyls of L21, A22, V25, and W28. The high-affinity site is in a position analogous to the calcium site in CBM4 structures and in a recent CBM22 structure. Binding of calcium increases the unfolding temperature of the protein (T(m)) by approximately 23 degrees C at pH 7.5. No correlation between binding affinity and T(m) change was noted, as each of the two calcium ions contributes almost equally to the increase in unfolding temperature.
  •  
15.
  • Abou-Hachem, Maher, et al. (författare)
  • Probing stability of the modular thermostable xylanase Xyn10A
  • 2003
  • Ingår i: Extremophiles. - : Springer Science and Business Media LLC. - 1433-4909 .- 1431-0651. ; 7:6, s. 483-491
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermophilic bacterium Rhodothermus marinus produces a modular xylanase (Xyn10A) consisting of two N-terminal carbohydrate-binding modules (CBMs), followed by a domain of unknown function, and a catalytic module flanked by a fifth domain. Both Xyn10A CBMs bind calcium ions, and this study explores the effect of these ions on the stability of the full-length enzyme. Xyn10A and truncated forms thereof were produced and their thermostabilities were evaluated under different calcium loads. Studies performed using differential scanning calorimetry showed that the unfolding temperature of the Xyn10A was significantly dependent on the presence of Ca2+, and that the third domain of the enzyme binds at least one Ca2+. Thermal inactivation studies confirmed the role of tightly bound Ca2+ in stabilizing the enzyme, but showed that the presence of a large excess of this ion results in reduced kinetic stability. The truncated forms of Xyn10A were less stable than the full-length enzyme, indicative of module/domain thermostabilizing interactions. Finally, possible roles of the two domains of unknown function are discussed in the light of this study. This is the first report on the thermostabilizing role of calcium on a modular family 10 xylanase that displays multiple calcium binding in three of its five domains/modules.
  •  
16.
  • Abou-Hachem, Maher, et al. (författare)
  • The modular organisation and stability of a thermostable family 10 xylanase
  • 2003
  • Ingår i: Biocatalysis and Biotransformation. - : Informa UK Limited. - 1024-2422 .- 1029-2446. ; 21:5-6, s. 253-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The thermophilic marine bacterium Rhodothermus marinus produces a modular family 10 xylanase (Xyn10A). It consists of two N-terminal family 4 carbohydrate binding modules (CBMs) followed by a domain of unknown function (D3), and a catalytic module (CM) flanked by a small fifth domain (D5) at its C-terminus. Several truncated mutants of the enzyme have been produced and characterised with respect to biochemical properties and stability. Multiple calcium binding sites are shown to be present in the two N-terminal CBMs and recent evidence suggests that the third domain of the enzyme also has the ability to bind the same metal ligand. The specific binding of Ca2+ was demonstrated to have a pronounced effect on thermostability as shown by differential scanning calorimetry and thermal inactivation studies. Furthermore, deletion mutants of the enzyme were less stable than the full-length enzyme suggesting that module interactions contributed to the stability of the enzyme. Finally, recent evidence indicates that the fifth domain of Xyn10A is a novel type of module mediating cell-attachment.
  •  
17.
  • Aevarsson, Arnthór, et al. (författare)
  • Going to extremes - a metagenomic journey into the dark matter of life
  • 2021
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 1574-6968. ; 368:12
  • Forskningsöversikt (refereegranskat)abstract
    • The Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, established in 2016, included experts from eight European countries. The unique approach based on high throughput bioinformatics technologies combined with structural and functional studies resulted in the development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-X consortium cover the entire range from bioprospecting and methods development in bioinformatics to protein production and characterisation, with the final goal of translating our results into new products for the bioeconomy. The significant impact the consortium made in all of these areas was possible due to the successful cooperation between expert teams that worked together to solve a complex scientific problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere, widely considered as the last great frontier of life.
  •  
18.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure and initial characterization of a novel archaeal-like Holliday junction-resolving enzyme from Thermus thermophilus phage Tth15-6
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 2, s. 212-227
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the production, characterization and structure determination of a novel Holliday junction-resolving enzyme. The enzyme, termed Hjc_15-6, is encoded in the genome of phage Tth15-6, which infects Thermus thermophilus. Hjc_15-6 was heterologously produced in Escherichia coli and high yields of soluble and biologically active recombinant enzyme were obtained in both complex and defined media. Amino-acid sequence and structure comparison suggested that the enzyme belongs to a group of enzymes classified as archaeal Holliday junction-resolving enzymes, which are typically divalent metal ion-binding dimers that are able to cleave X-shaped dsDNA-Holliday junctions (Hjs). The crystal structure of Hjc_15-6 was determined to 2.5 Å resolution using the selenomethionine single-wavelength anomalous dispersion method. To our knowledge, this is the first crystal structure of an Hj-resolving enzyme originating from a bacteriophage that can be classified as an archaeal type of Hj-resolving enzyme. As such, it represents a new fold for Hj-resolving enzymes from phages. Characterization of the structure of Hjc_15-6 suggests that it may form a dimer, or even a homodimer of dimers, and activity studies show endonuclease activity towards Hjs. Furthermore, based on sequence analysis it is proposed that Hjc_15-6 has a three-part catalytic motif corresponding to E-SD-EVK, and this motif may be common among other Hj-resolving enzymes originating from thermophilic bacteriophages.
  •  
19.
  • Ahlqvist, Josefin, et al. (författare)
  • Crystal structure of DNA polymerase I from Thermus phage G20c
  • 2022
  • Ingår i: Acta crystallographica. Section D, Structural biology. - 2059-7983. ; 78:Pt 11, s. 1384-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional. No functional 5'-3' exonuclease domain was present. Structural analysis also revealed a novel specific structure motif, here termed SβαR, that was not previously identified in any polymerase belonging to the DNA polymerases I (or the DNA polymerase A family). The SβαR motif did not show any homology to the sequences or structures of known DNA polymerases. The exception was the sequence conservation of the residues in this motif in putative DNA polymerases encoded in the genomes of a group of thermophilic phages related to Thermus phage G20c. The structure of PolI_G20c was determined with the aid of another structure that was determined in parallel and was used as a model for molecular replacement. This other structure was of a 3'-5' exonuclease termed ExnV1. The cloned and expressed gene encoding ExnV1 was isolated from a thermophilic virus metagenome that was collected from several hot springs in Iceland. The structure of ExnV1, which contains the novel SβαR motif, was first determined to 2.19 Å resolution. With these data at hand, the structure of PolI_G20c was determined to 2.97 Å resolution. The structures of PolI_G20c and ExnV1 are most similar to those of the Klenow fragment of DNA polymerase I (PDB entry 2kzz) from Escherichia coli, DNA polymerase I from Geobacillus stearothermophilus (PDB entry 1knc) and Taq polymerase (PDB entry 1bgx) from Thermus aquaticus.
  •  
20.
  • Ahlqvist, Josefin, et al. (författare)
  • DNA digestion and formation of DNA-network structures with Holliday junction-resolving enzyme Hjc_15-6 in conjunction with polymerase reactions
  • Ingår i: Journal of Biotechnology. - 1873-4863.
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently identified novel Holliday junction-resolving enzyme, termed Hjc_15-6, activity investigation results imply DNA cleavage by Hjc_15-6 in a manner that potentially enhances the molecular self-assembly that may be exploited for creating DNA-networks and nanostructures. The study also demonstrates Pwo DNA polymerase acting in combination with Hjc_15-6 capability to produce large amounts of DNA that transforms into large DNA-network structures even without DNA template and primers. Furthermore, it is demonstrated that Hjc_15-6 prefers Holliday junction oligonucleotides as compared to Y-shaped oligonucleotides as well as efficiently cleaves typical branched products from isothermal DNA amplification of both linear and circular DNA templates amplified by phi29-like DNA polymerase. The assembly of large DNA network structures was observed in real time, by transmission electron microscopy, on negative stained grids that were freshly prepared, and also on the same grids after incubation for 4 days under constant cooling. Hence, Hjc_15-6 is a promising molecular tool for efficient production of various DNA origamis that may be implemented for a wide range of applications such as within medical biomaterials, catalytic materials, molecular devices and biosensors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 172
Typ av publikation
tidskriftsartikel (142)
bokkapitel (11)
konferensbidrag (7)
forskningsöversikt (6)
doktorsavhandling (3)
annan publikation (2)
visa fler...
rapport (1)
visa färre...
Typ av innehåll
refereegranskat (160)
övrigt vetenskapligt/konstnärligt (12)
Författare/redaktör
Nordberg Karlsson, E ... (138)
Adlercreutz, Patrick (35)
Karlsson, Eva Nordbe ... (32)
Holst, Olle (29)
Linares-Pastén, Javi ... (20)
Fridjonsson, Olafur ... (17)
visa fler...
Turner, Charlotta (15)
Hreggvidsson, Gudmun ... (14)
Jasilionis, Andrius (14)
Sardari, Roya R.R. (13)
Stålbrand, Henrik (12)
Linares-Pastén, Javi ... (12)
Abou-Hachem, Maher (10)
Håkansson, Maria (9)
Grey, Carl (9)
Allahgholi, Leila (9)
Hreggvidsson, Gudmun ... (9)
Mattiasson, Bo (6)
Logan, Derek (5)
Kristjansdottir, Tho ... (5)
Gorton, Lo (4)
Nilsson, Ulf (4)
Aevarsson, Arnthór (4)
Kaczorowska, Anna-Ka ... (4)
Ahlqvist, Josefin (4)
Al-Karadaghi, Salam (4)
Kaczorowski, Tadeusz (4)
Watzlawick, Hildegar ... (4)
Immerzeel, Peter (4)
Mamo, Gashaw (4)
Fredriksson, Cecilia (3)
Walse, Björn (3)
Simpson, Peter J (3)
Linse, Sara (3)
Williamson, Michael ... (3)
Gilbert, Harry J (3)
Bartonek-Roxå, Eva (3)
Hagander, Per (3)
Dabrowski, Slawomir (3)
Freitag-Pohl, Stefan ... (3)
Gudmundsson, Hördur (3)
Welin, Martin (3)
Hedström, Martin (3)
Andersson, Maria (3)
Waldebäck, Monica (3)
Markides, Karin (3)
Wang, Lei (3)
Wendin, Karin (3)
Brumer, Harry (3)
Plaza, Merichel (3)
visa färre...
Lärosäte
Lunds universitet (168)
Kungliga Tekniska Högskolan (6)
Örebro universitet (6)
Uppsala universitet (5)
Högskolan Kristianstad (3)
Göteborgs universitet (2)
visa fler...
Mälardalens universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (169)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Teknik (113)
Naturvetenskap (72)
Lantbruksvetenskap (17)
Medicin och hälsovetenskap (14)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy