SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Orosz G.) "

Sökning: WFRF:(Orosz G.)

  • Resultat 11-20 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Imai, H., et al. (författare)
  • FLASHING: New high-velocity H2O masers in IRAS 18286−0959
  • 2020
  • Ingår i: Publication of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 2053-051X .- 0004-6264. ; 72:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We discovered new high-velocity components of H2O maser emission in one of the “water fountain” sources, IRAS 18286−0959, which has been monitored using the Nobeyama 45 m telescope in the FLASHING (Finest Legacy Acquisitions of SiO- and H2O-maser Ignitions by Nobeyama Generation) project since 2018 December. The maser spectra show new components with extremely high expansion velocities (>200 km s−1 projected in the line of sight), some of which are located symmetrically in the spectrum with respect to the systemic velocity. They were also mapped with KaVA (KVN and VERA Combined Array) in 2019 March. We located some of these maser components closer to the central stellar system than other high-velocity components (50-200 km s−1) that have been confirmed to be associated with the known bipolar outflow. The new components would have flashed in the fast collimated jet at a speed of over 300 km s−1 (soon) after 2011 when they had not been detected. The fastest of the new components seem to indicate rapid deceleration in these spectra; however, our present monitoring is still too sparse to unambiguously confirm it (up to 50 km s−1 yr−1) and too short to reveal their terminal expansion velocity, which will be equal to the expansion velocity that has been observed (vexp ∼ 120 km s−1). Future occurrences of such extreme-velocity components may provide a good opportunity to investigate possible recurrent outflow ignitions. Thus, the sculpture of the parental envelope will be traced by the dense gas that is entrained by the fast jet and exhibits spectacular distributions of the relatively stable maser features.
  •  
12.
  • Imai, H., et al. (författare)
  • Water and silicon-monoxide masers monitored towards the water fountain sources
  • 2021
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 17, s. 91-93
  • Konferensbidrag (refereegranskat)abstract
    • We have investigated the evolution of 12 water fountain sources in real time in the accompanying H2O 2o and SiO masers through our FLASHING (Finest Legacy Acquisitions of SiO-/ H2O 2o-maser Ignitions by Nobeyama Generation) project. It has been confirmed that these masers are excellent probes of new jet blob ejections, acceleration of the material supplied from the parental circumstellar envelope and entrained by the stellar jets yielding its deceleration. Possible periodic variations of the maser emission, reflecting properties of the central dying stars or binary systems, will be further investigated.
  •  
13.
  • Imai, Hiroshi, et al. (författare)
  • Water Fountain Sources Monitored in FLASHING
  • 2022
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 18, s. 333-337
  • Konferensbidrag (refereegranskat)abstract
    • We have investigated the spectral evolutions of H2O and SiO masers associated with 12 water fountain sources in our FLASHING (Finest Legacy Acquisitions of SiO-/H2O-maser Ignitions by Nobeyama Generation) project. Our monitoring observations have been conducted using the Nobeyama 45 m telescope every 2 weeks-2 months since 2018 December except during summer seasons. We have found new extremely high velocity H2O maser components, breaking the records of jet speeds in this type of sources. Systematic line-of-sight velocity drifts of the H2O maser spectral peaks have also been found, indicating acceleration of the entrained material hosting the masers around the jet. Moreover, by comparing with previous spectral data, we can find decadal growths/decays of H2O maser emission. Possible periodic variations of the maser spectra are further being inspected in order to explore the periodicity of the central stellar system (a pulsating star or a binary). Thus we expect to see the real-time evolution/devolutions of the water fountains over decades.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  • Orosz, G., et al. (författare)
  • Bow shocks in water fountain jets
  • 2017
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 13:S336, s. 351-354
  • Konferensbidrag (refereegranskat)abstract
    • We briefly introduce the VLBI maser astrometric analysis of IRAS 18043-2116 and IRAS 18113-2503, two remarkable and unusual water fountains with spectacular bipolar bow shocks in their high-speed collimated jet-driven outflows. The 22 GHz H2O maser structures and velocities clearly show that the jets are formed in very short-lived, episodic outbursts, which may indicate episodic accretion in an underlying binary system.
  •  
19.
  • Tafoya, Daniel, 1981, et al. (författare)
  • Shaping the Envelope of the Asymptotic Giant Branch Star W43A with a Collimated Fast Jet
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 890:1
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the major puzzles in the study of stellar evolution is the formation process of bipolar and multipolar planetary nebulae. There is growing consensus that collimated jets create cavities with dense walls in the slowly expanding (10-20 km s(-1)) envelope ejected in previous evolutionary phases, leading to the observed morphologies. However, the launching of the jet and the way it interacts with the circumstellar material to create such asymmetric morphologies have remained poorly known. Here we present for the first time CO emission from the asymptotic giant branch star W43A that traces the whole stream of a jet, from the vicinity of its driving stellar system out to the regions where it shapes the circumstellar envelope. We found that the jet has a launch velocity of 175 km s(-1) and decelerates to a velocity of 130 km s(-1) as it interacts with circumstellar material. The continuum emission reveals a bipolar shell with a compact bright dot in the center that pinpoints the location of the driving source of the jet. The kinematical ages of the jet and the bipolar shell are equal, tau similar to 60 yr, indicating that they were created simultaneously, probably by a common underlying mechanism, and in an extremely short time. These results provide key initial conditions for the theoretical models that aim to explain the formation of bipolar morphologies in the circumstellar envelopes of low- and intermediate-mass stars.
  •  
20.
  • Tafoya, Daniel, 1981, et al. (författare)
  • Spatio-kinematical model of the collimated molecular outflow in the water-fountain nebula IRAS 16342-3814
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 629
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Water-fountain nebulae are asymptotic giant branch (AGB) and post-AGB objects that exhibit high-velocity outflows traced by water-maser emission. Their study is important for understanding the interaction between collimated jets and the circumstellar material that leads to the formation of bipolar and/or multi-polar morphologies in evolved stars. Aims. The aim of this paper is to describe the three-dimensional morphology and kinematics of the molecular gas of the water-fountain nebula IRAS 16342-3814. Methods. Data was retrieved from the ALMA archive for analysis using a simple spatio-kinematical model. The software SHAPE was employed to construct a three-dimensional, spatio-kinematical model of the molecular gas in IRAS 16342-3814, and to then reproduce the intensity distribution and position-velocity diagram of the CO emission from the ALMA observations to derive the morphology and velocity field of the gas. Data from CO(J = 1 -> 0) supported the physical interpretation of the model. Results. A spatio-kinematical model that includes a high-velocity collimated outflow embedded within material expanding at relatively lower velocity reproduces the images and position-velocity diagrams from the observations. The derived morphology is in good agreement with previous results from IR and water-maser emission observations. The high-velocity collimated outflow exhibits deceleration across its length, while the velocity of the surrounding component increases with distance. The morphology of the emitting region, the velocity field, and the mass of the gas as function of velocity are in excellent agreement with the properties predicted for a molecular outflow driven by a jet. The timescale of the molecular outflow is estimated to be similar to 70-100 yr. The scalar momentum carried by the outflow is much larger than it can be provided by the radiation of the central star. An oscillating pattern was found associated with the high-velocity collimated outflow. The oscillation period of the pattern is T approximate to 60-90 yr and its opening angle is theta(op) approximate to 2 degrees. Conclusions. The CO (J= 3 -> 2) emission in IRAS 16342-3814 is interpreted in terms of a jet-driven molecular outflow expanding along an elongated region. The position-velocity diagram and the mass spectrum reveal a feature due to entrained material that is associated with the driving jet. This feature is not seen in other more evolved objects that exhibit more developed bipolar morphologies. It is likely that the jet in those objects has already disappeared since it is expected to last only for a couple hundred years. This strengthens the idea that water fountain nebulae are undergoing a very short transition during which they develop the collimated outflows that shape the circumstellar envelopes. The oscillating pattern seen in the CO high-velocity outflow is interpreted as due to precession with a relatively small opening angle. The precession period is compatible with the period of the corkscrew pattern seen at IR wavelengths. We propose that the high-velocity molecular outflow traces the underlying primary jet that produces such a pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy