SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peñuelas Josep) "

Sökning: WFRF:(Peñuelas Josep)

  • Resultat 11-20 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Fu, Yongshuo H., et al. (författare)
  • Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees
  • 2023
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 29:5, s. 1377-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past decades, global warming has led to a lengthening of the time window during which temperatures remain favorable for carbon assimilation and tree growth, resulting in a lengthening of the green season. The extent to which forest green seasons have tracked the lengthening of this favorable period under climate warming, however, has not been quantified to date. Here, we used remote sensing data and long-term ground observations of leaf-out and coloration for six dominant species of European trees at 1773 sites, for a total of 6060 species–site combinations, during 1980–2016 and found that actual green season extensions (GS: 3.1 ± 0.1 day decade−1) lag four times behind extensions of the potential thermal season (TS: 12.6 ± 0.1 day decade−1). Similar but less pronounced differences were obtained using satellite-derived vegetation phenology observations, that is, a lengthening of 4.4 ± 0.13 and 7.5 ± 0.13 day decade−1 for GS and TS, respectively. This difference was mainly driven by the larger advance in the onset of the thermal season compared to the actual advance of leaf-out dates (spring mismatch: 7.2 ± 0.1 day decade−1), but to a less extent caused by a phenological mismatch between GS and TS in autumn (2.4 ± 0.1 day decade−1). Our results showed that forest trees do not linearly track the new thermal window extension, indicating more complex interactions between winter and spring temperatures and photoperiod and a justification of demonstrating that using more sophisticated models that include the influence of chilling and photoperiod is needed to accurately predict spring phenological changes under warmer climate. They urge caution if such mechanisms are omitted to predict, for example, how vegetative health and growth, species distribution and crop yields will change in the future.
  •  
12.
  • Garbulsky, Martin F., et al. (författare)
  • Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems
  • 2010
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-8238 .- 1466-822X. ; 19:2, s. 253-267
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between -13 and 26 degrees C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra-annual variability of the RUE at the coldest energy-limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra-annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra-annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.
  •  
13.
  • Geng, Xiaojun, et al. (författare)
  • Contrasting phenology responses to climate warming across the northern extra-tropics
  • 2022
  • Ingår i: Fundamental Research. - : Elsevier BV. - 2667-3258. ; 2:5, s. 708-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate warming has substantially advanced the timing of spring leaf-out of woody species at middle and high latitudes, albeit with large differences. Insights in the spatial variation of this climate warming response may therefore help to constrain future trends in leaf-out and its impact on energy, water and carbon balances at global scales. In this study, we used in situ phenology observations of 38 species from 2067 study sites, distributed across the northern hemisphere in China, Europe and the United States, to investigate the latitudinal patterns of spring leaf-out and its sensitivity (ST, advance of leaf-out dates per degree of warming) and correlation (RT, partial correlation coefficient) to temperature during the period 1980–2016. Across all species and sites, we found that ST decreased significantly by 0.15 ± 0.02 d °C−1 °N−1, and RT increased by 0.02 ± 0.001 °N−1 (both at P < 0.001). The latitudinal patterns in RT and ST were explained by the differences in requirements of chilling and thermal forcing that evolved to maximize tree fitness under local climate, particularly climate predictability and summed precipitation during the pre-leaf-out season. Our results thus showed complicated spatial differences in leaf-out responses to ongoing climate warming and indicated that spatial differences in the interactions among environmental cues need to be embedded into large-scale phenology models to improve the simulation accuracy.
  •  
14.
  • Guerrieri, Rossella, et al. (författare)
  • Substantial contribution of tree canopy nitrifiers to nitrogen fluxes in European forests
  • 2024
  • Ingår i: Nature Geoscience. - Göteborg : IVL Svenska Miljöinstitutet. - 1752-0894 .- 1752-0908. ; 17:2, s. 130-136
  • Tidskriftsartikel (refereegranskat)abstract
    • Human activities have greatly increased the reactive nitrogen in the biosphere, thus profoundly altering global nitrogen cycling. The large increase in nitrogen deposition over the past few decades has led to eutrophication in natural ecosystems, with negative effects on forest health and biodiversity. Recent studies, however, have reported oligotrophication in forest ecosystems, constraining their capacity as carbon sinks. Here we demonstrate the widespread biological transformation of atmospheric reactive nitrogen in the canopies of European forests by combining nitrogen deposition quantification with measurements of the stable isotopes in nitrate and molecular analyses across ten forests through August–October 2016. We estimate that up to 80% of the nitrate reaching the soil via throughfall was derived from canopy nitrification, equivalent to a flux of up to 5.76 kg N ha−1 yr−1. We also document the presence of autotrophic nitrifiers on foliar surfaces throughout European forests. Canopy nitrification thus consumes deposited ammonium and increases nitrate inputs to the soil. The results of this study highlight widespread canopy nitrification in European forests and its important contribution to forest nitrogen cycling.
  •  
15.
  • Harrison, Sandy P., et al. (författare)
  • Eco-evolutionary optimality as a means to improve vegetation and land-surface models
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 231:6, s. 2125-2141
  • Forskningsöversikt (refereegranskat)abstract
    • Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studies that demonstrate how EEO generates parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
  •  
16.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
17.
  • Kirschbaum, Miko U.F., et al. (författare)
  • Is tree planting an effective strategy for climate change mitigation?
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier B.V.. - 0048-9697 .- 1879-1026. ; 909
  • Tidskriftsartikel (refereegranskat)abstract
    • The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO2 by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees. First, one needs to consider the potential reversibility of C sequestration in trees through either harvesting or tree death from natural factors. If carbon storage is only temporary, future temperatures will actually be higher than without tree plantings, but cumulative warming will be reduced, contributing both positively and negatively to future climate-change impacts. Alternatively, forests could be used for bioenergy or wood products to replace fossil-fuel use which would obviate the need to consider the possible reversibility of any benefits. Forests also affect the Earth's energy balance through either absorbing or reflecting incoming solar radiation. As forests generally absorb more incoming radiation than bare ground or grasslands, this constitutes an important warming effect that substantially reduces the benefit of C storage, especially in snow-covered regions. Forests also affect other local ecosystem services, such as conserving biodiversity, modifying water and nutrient cycles, and preventing erosion that could be either beneficial or harmful depending on specific circumstances. Considering all these factors, tree plantings may be beneficial or detrimental for mitigating climate-change impacts, but the range of possibilities makes generalisations difficult. Their net benefit depends on many factors that differ between specific circumstances. One can, therefore, neither uncritically endorse tree planting everywhere, nor condemn it as counter-productive. Our aim is to provide key information to enable appropriate assessments to be made under specific circumstances. We conclude our discussion by providing a step-by-step guide for assessing the merit of tree plantings under specific circumstances.
  •  
18.
  • Li, Jian, et al. (författare)
  • Assembly and succession of the phyllosphere microbiome and nutrient-cycling genes during plant community development in a glacier foreland
  • 2024
  • Ingår i: Environment International. - 0160-4120. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant–microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.
  •  
19.
  • Liu, Daijun, et al. (författare)
  • Delayed and altered post-fire recovery pathways of Mediterranean shrubland under 20-year drought manipulation
  • 2022
  • Ingår i: Forest Ecology and Management. - : Elsevier BV. - 0378-1127. ; 506
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing water deficits and severe droughts are expected to alter the dynamics of vegetation post-disturbance recovery by decreasing new recruitment and limiting growth in semi-arid Mediterranean ecosystems in future. However, which vegetation metrics will be shifted and how they respond over time are not clear, and the experimental evidence is still limited. Here we assessed the impacts of a long-term (20 years) experimental drought (−30% rainfall) on the pathways of vegetation metrics related to species richness, community composition and abundance dynamics for an early-successional Mediterranean shrubland. The results indicate that the pathways of vegetation metrics were differently affected by experimental drought. The abundance of Globularia alypum follows pathway 1 (altered mature state). Simpson diversity and abundance of Erica multiflora follow pathway 2 (delayed succession) while species richness, community abundance and shrub abundance follow pathway 3 (alternative stable state). There were no significances for the resilience to extremely dry years (the ratio between the performance after and before severe events) between control and drought treatment for all vegetation metric. But, their resilience for the metrics (except Simpson diversity) to extremely dry years in 2016–17 were significantly lower than that of 2001 and of 2006–07, possibly caused by the severe water deficits in 2016–17 at mature successional stage. Principal component analysis (PCA) shows that the first two principal components explained 72.3 % of the variance in vegetation metrics. The first axis was mainly related to the changes in community abundance, shrub abundance and species richness while the second axis was related to Simpson diversity and abundance of G. alypum and E. multiflora. Principal component scores along PC1 between control and drought treatment were significantly decreased by long-term experimental drought, but the scores along PC2 were not affected. Further research should focus on successional pathways in more water-deficit conditions in Mediterranean ecosystems and the consequences of changes in vegetation recovery pathways on ecosystem functions such as biomass accumulation and soil properties.
  •  
20.
  • Liu, Daijun, et al. (författare)
  • Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability
  • 2021
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 230:5, s. 1761-1771
  • Forskningsöversikt (refereegranskat)abstract
    • Grasslands are key repositories of biodiversity and carbon storage and are heavily impacted by effects of global warming and changes in precipitation regimes. Patterns of grassland dynamics associated with variability in future climate conditions across spatiotemporal scales are yet to be adequately quantified. Here, we performed a global meta-analysis of year and growing season sensitivities of vegetation aboveground biomass (AGB), aboveground net primary productivity (ANPP), and species richness (SR) and diversity (Shannon index, H) to experimental climate warming and precipitation shifts. All four variables were sensitive to climate change. Their sensitivities to shifts in precipitation were correlated with local background water availability, such as mean annual precipitation (MAP) and aridity, and AGB and ANPP sensitivities were greater in dry habitats than in non-water limited habitats. There was no effect of duration of experiment (short vs long-term) on sensitivities. Temporal trends in ANPP and SR sensitivity depended on local water availability; ANPP sensitivity to warming increased over time and SR sensitivity to irrigation decreased over time. Our results provide a global overview of the sensitivities of grassland function and diversity to climate change that will improve understanding of ecological responses across spatiotemporal scales and inform policies for conservation in dry climates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 36
Typ av publikation
tidskriftsartikel (32)
forskningsöversikt (2)
konferensbidrag (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (36)
Författare/redaktör
Peñuelas, Josep (36)
Ciais, Philippe (9)
Ostonen, Ivika (5)
Brandt, Martin (5)
van Bodegom, Peter M ... (5)
Estiarte, Marc (5)
visa fler...
Ogaya, Roma (5)
Fensholt, Rasmus (4)
Manzoni, Stefano (4)
Richter, Andreas (4)
Sigurdsson, Bjarni D ... (4)
Sigurdsson, Páll (4)
Ardö, Jonas (3)
Wallander, Håkan (3)
Jentsch, Anke (3)
Reich, Peter B (3)
Wigneron, Jean Pierr ... (3)
Harrison, Sandy P. (3)
Tang, Jing (3)
Soudzilovskaia, Nade ... (3)
Stenseth, Nils Chr (3)
Iversen, Colleen M. (3)
Buchmann, Nina (3)
Diaz, Sandra (2)
Tagesson, Torbern (2)
Liu, Lei (2)
Guenet, Bertrand (2)
Torn, Margaret S. (2)
Montagnani, Leonardo (2)
Stocker, Benjamin D. (2)
Chen, Chi (2)
Li, Jian (2)
Gundersen, Per (2)
Poschlod, Peter (2)
Dainese, Matteo (2)
Björkman, Anne, 1981 (2)
Piao, Shilong (2)
Pugh, Thomas A M (2)
Brännström, Åke, 197 ... (2)
Kätterer, Thomas (2)
Zhang, Chao (2)
Reinsch, Sabine (2)
Niinemets, Ulo (2)
Benavides, Raquel (2)
Valladares, Fernando (2)
Ozinga, Wim A. (2)
Vellend, Mark (2)
Chapin, F. Stuart (2)
Te Beest, Mariska (2)
Bastos, Ana (2)
visa färre...
Lärosäte
Lunds universitet (18)
Umeå universitet (8)
Sveriges Lantbruksuniversitet (7)
Stockholms universitet (6)
Göteborgs universitet (4)
Uppsala universitet (2)
visa fler...
Linnéuniversitetet (2)
IVL Svenska Miljöinstitutet (2)
Kungliga Tekniska Högskolan (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (34)
Lantbruksvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy