SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Potts K) "

Sökning: WFRF:(Potts K)

  • Resultat 11-20 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Potts, C., et al. (författare)
  • Chatbots to Support Mental Wellbeing of People Living in Rural Areas: Can User Groups Contribute to Co-design?
  • 2021
  • Ingår i: Journal of Technology in Behavioral Science. - : Springer. - 2366-5963. ; 6, s. 652-665
  • Tidskriftsartikel (refereegranskat)abstract
    • Digital technologies such as chatbots can be used in the field of mental health. In particular, chatbots can be used to support citizens living in sparsely populated areas who face problems such as poor access to mental health services, lack of 24/7 support, barriers to engagement, lack of age appropriate support and reductions in health budgets. The aim of this study was to establish if user groups can design content for a chatbot to support the mental wellbeing of individuals in rural areas. University students and staff, mental health professionals and mental health service users (N = 78 total) were recruited to workshops across Northern Ireland, Ireland, Scotland, Finland and Sweden. The findings revealed that participants wanted a positive chatbot that was able to listen, support, inform and build a rapport with users. Gamification could be used within the chatbot to increase user engagement and retention. Content within the chatbot could include validated mental health scales and appropriate response triggers, such as signposting to external resources should the user disclose potentially harmful information or suicidal intent. Overall, the workshop participants identified user needs which can be transformed into chatbot requirements. Responsible design of mental healthcare chatbots should consider what users want or need, but also what chatbot features artificial intelligence can competently facilitate and which features mental health professionals would endorse.
  •  
12.
  • Viljur, Mari-Liis, et al. (författare)
  • The effect of natural disturbances on forest biodiversity : an ecological synthesis
  • 2022
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 97:5, s. 1930-1947
  • Tidskriftsartikel (refereegranskat)abstract
    • Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity–disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the β-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes. 
  •  
13.
  •  
14.
  • Blois, Jessica L., et al. (författare)
  • A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary
  • 2014
  • Ingår i: Ecography. - : Wiley. - 1600-0587 .- 0906-7590. ; 37:11, s. 1095-1108
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental conditions, dispersal lags, and interactions among species are major factors structuring communities through time and across space. Ecologists have emphasized the importance of biotic interactions in determining local patterns of species association. In contrast, abiotic limits, dispersal limitation, and historical factors have commonly been invoked to explain community structure patterns at larger spatiotemporal scales, such as the appearance of late Pleistocene no-analog communities or latitudinal gradients of species richness in both modern and fossil assemblages. Quantifying the relative influence of these processes on species co-occurrence patterns is not straightforward. We provide a framework for assessing causes of species associations by combining a null-model analysis of co-occurrence with additional analyses of climatic differences and spatial pattern for pairs of pollen taxa that are significantly associated across geographic space. We tested this framework with data on associations among 106 fossil pollen taxa and paleoclimate simulations from eastern North America across the late Quaternary. The number and proportion of significantly associated taxon pairs increased over time, but only 449 of 56 194 taxon pairs were significantly different from random. Within this significant subset of pollen taxa, biotic interactions were rarely the exclusive cause of associations. Instead, climatic or spatial differences among sites were most frequently associated with significant patterns of taxon association. Most taxon pairs that exhibited co-occurrence patterns indicative of biotic interactions at one time did not exhibit significant associations at other times. Evidence for environmental filtering and dispersal limitation was weakest for aggregated pairs between 16 and 11 kyr BP, suggesting enhanced importance of positive species interactions during this interval. The framework can thus be used to identify species associations that may reflect biotic interactions because these associations are not tied to environmental or spatial differences. Furthermore, temporally repeated analyses of spatial associations can reveal whether such associations persist through time.
  •  
15.
  •  
16.
  • Gardner, Emma, et al. (författare)
  • Field boundary features can stabilise bee populations and the pollination of mass-flowering crops in rotational systems
  • 2021
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 58:10, s. 2287-2304
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators experience large spatiotemporal fluctuations in resource availability when mass-flowering crops are rotated with resource-poor cereal crops. Yet, few studies have considered the effect this has on pollinator population stability, nor how this might be mitigated to maintain consistent crop pollination services. We assess the potential of boundary features (standard narrow 1 m grassy margins, hedgerows and wide 4 m agri-environment margins) to support and stabilise pollinator populations and pollination service in agricultural landscapes under crop rotation. Assuming a 6-year rotation, we use a process-based pollinator model to predict yearly pollinator population size and in-crop visitation rates to oilseed rape and field bean across 117 study landscapes in England with varying amounts of boundary features. We model both ground-nesting bumblebees and solitary bees and compare the predictions including and excluding boundary features from the landscapes. Ground-nesting bumblebee populations, whose longer-lifetime colonies benefit from continuity of resources, were larger and more stable (relative to the no-features scenario) in landscapes with more boundary features. Ground-nesting solitary bee populations were also larger but not significantly more stable, except with the introduction of wide permanent agri-environment margins, due to their shorter lifetimes and shorter foraging/dispersal ranges. Crop visitation by ground-nesting bumblebees was greater and more stable in landscapes with more boundary features, partly due to increased colony growth prior to crop flowering. Time averaged crop visitation by ground-nesting solitary bees was slightly lower, due to females dividing their foraging time between boundary features and the crop. However, despite this, the minimum pollination service delivered was higher, due to the more stable delivery. Synthesis and applications. Field boundary features have an important role in stabilising pollinator populations and pollination service in rotational systems, although maintenance of larger semi-natural habitat patches may be more effective for stabilising less mobile solitary bee populations. We recommend using combinations of boundary features, accounting for pollinator range when spacing features/rotating crops, and synchronising boundary feature management with crop rotation to maximise their stabilising benefits.
  •  
17.
  • Gardner, Emma, et al. (författare)
  • Reliably predicting pollinator abundance : Challenges of calibrating process-based ecological models
  • 2020
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 11:12, s. 1673-1689
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollination is a key ecosystem service for global agriculture but evidence of pollinator population declines is growing. Reliable spatial modelling of pollinator abundance is essential if we are to identify areas at risk of pollination service deficit and effectively target resources to support pollinator populations. Many models exist which predict pollinator abundance but few have been calibrated against observational data from multiple habitats to ensure their predictions are accurate. We selected the most advanced process-based pollinator abundance model available and calibrated it for bumblebees and solitary bees using survey data collected at 239 sites across Great Britain. We compared three versions of the model: one parameterised using estimates based on expert opinion, one where the parameters are calibrated using a purely data-driven approach and one where we allow the expert opinion estimates to inform the calibration process. All three model versions showed significant agreement with the survey data, demonstrating this model's potential to reliably map pollinator abundance. However, there were significant differences between the nesting/floral attractiveness scores obtained by the two calibration methods and from the original expert opinion scores. Our results highlight a key universal challenge of calibrating spatially explicit, process-based ecological models. Notably, the desire to reliably represent complex ecological processes in finely mapped landscapes necessarily generates a large number of parameters, which are challenging to calibrate with ecological and geographical data that are often noisy, biased, asynchronous and sometimes inaccurate. Purely data-driven calibration can therefore result in unrealistic parameter values, despite appearing to improve model-data agreement over initial expert opinion estimates. We therefore advocate a combined approach where data-driven calibration and expert opinion are integrated into an iterative Delphi-like process, which simultaneously combines model calibration and credibility assessment. This may provide the best opportunity to obtain realistic parameter estimates and reliable model predictions for ecological systems with expert knowledge gaps and patchy ecological data.
  •  
18.
  • Garibaldi, Lucas A., et al. (författare)
  • Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 339:6127, s. 1608-1611
  • Tidskriftsartikel (refereegranskat)abstract
    • The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
  •  
19.
  • Garratt, Michael P D, et al. (författare)
  • Opportunities to reduce pollination deficits and address production shortfalls in an important insect pollinated crop
  • 2021
  • Ingår i: Ecological Applications. - : Wiley. - 1051-0761 .- 1939-5582.
  • Tidskriftsartikel (refereegranskat)abstract
    • Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of 'pollination deficits', where maximum yield is not being achieved due to insufficient pollination, we use an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries as well as compare 'pollinator dependence' across different apple varieties. We found evidence of pollination deficits and in some cases, risks of over-pollination were even apparent where fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others, in terms of avoiding a pollination deficit and crop yield shortfalls due to sub-optimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrate that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help target local management to address deficits although crop variety has a strong influence on the role of pollinators.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy