SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Röding Magnus) "

Sökning: WFRF:(Röding Magnus)

  • Resultat 11-20 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Bradley, Siobhan J., et al. (författare)
  • Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots
  • 2017
  • Ingår i: Microchimica Acta. - : Springer Science and Business Media LLC. - 0026-3672 .- 1436-5073. ; 184:3, s. 871-878
  • Tidskriftsartikel (refereegranskat)abstract
    • Heterogeneity is an inherent property of a wealth of real-world nanomaterials and yet rarely in the reporting of new properties is its effect sufficiently addressed. Graphene quantum dots (GQDs) – fluorescent, nanoscale fragments of graphene - are an extreme example of a heterogeneous nanomaterial. Here, top-down approaches – by far the most predominant – produce batches of particles with a distribution of sizes, shapes, extent of oxidation, chemical impurities and more. This makes characterization of these materials using bulk techniques particularly complex and comparisons of properties across different synthetic methods uninformative. In particular, it hinders the understanding of the structural origin of their fluorescence properties. We present a simple synthetic method, which produces graphene quantum dots with very low oxygen content that can be suspended in organic solvents, suggesting a very pristine material. We use this material to illustrate the limitations of interpreting complex data sets generated by heterogeneous materials and we highlight how misleading this “pristine” interpretation is by comparison with graphene oxide quantum dots synthesized using an established protocol. In addition, we report on the solvatochromic properties of these particles, discuss common characterization techniques and their limitations in attributing properties to heterogeneous materials.
  •  
12.
  • Carmona, Pierre, 1995, et al. (författare)
  • Controlling the structure of spin-coated multilayer ethylcellulose/ hydroxypropylcellulose films for drug release
  • 2023
  • Ingår i: International Journal of Pharmaceutics. - 0378-5173 .- 1873-3476. ; 644
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. Water-soluble HPC leaches out and forms a porous structure that controls the drug transport. Industrially, the pellets are coated using a fluidized bed spraying device, and a layered film exhibiting varying porosity and structure after leaching is obtained. A detailed understanding of the formation of the multilayered, phase-separated structure during production is lacking. Here, we have investigated multilayered EC/HPC films produced by sequential spin-coating, which was used to mimic the industrial process. The effects of EC/HPC ratio and spin speed on the multilayer film formation and structure were investigated using advanced microscopy techniques and image analysis. Cahn-Hilliard simulations were performed to analyze the mixing behavior. A gradient with larger structures close to the substrate surface and smaller structures close to the air surface was formed due to coarsening of the layers already coated during successive deposition cycles. The porosity of the multilayer film was found to vary with both EC/HPC ratio and spin speed. Simulation of the mixing behavior and in situ characterization of the structure evolution showed that the origin of the discontinuities and multilayer structure can be explained by the non-mixing of the layers.
  •  
13.
  • Carmona, Pierre, 1995, et al. (författare)
  • Cross-sectional structure evolution of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films during solvent quenching
  • 2022
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 12:40, s. 26078-26089
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport out of pharmaceutical pellets. The films are applied on the pellets using fluidized bed spraying. The drug transport rate is determined by the structure of the porous films that are formed as the water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure during production is lacking. Here, we have investigated EC/HPC films produced by spin-coating, which mimics the industrial manufacturing process. This work aimed to understand the structure formation and film shrinkage during solvent evaporation. The cross-sectional structure evolution was characterized using confocal laser scanning microscopy (CLSM), profilometry and image analysis. The effect of the EC/HPC ratio on the cross-sectional structure evolution was investigated. During shrinkage of the film, the phase-separated structure undergoes a transition from 3D to nearly 2D structure evolution along the surface. This transition appears when the typical length scale of the phase-separated structure is on the order of the thickness of the film. This was particularly pronounced for the bicontinuous systems. The shrinkage rate was found to be independent of the EC/HPC ratio, while the initial and final film thickness increased with increasing HPC fraction. A new method to estimate part of the binodal curve in the ternary phase diagram for EC/HPC in ethanol has been developed. The findings of this work provide a good understanding of the mechanisms responsible for the morphology development and allow tailoring of thin EC/HPC films structure for controlled drug release. 
  •  
14.
  • Carmona, Pierre, 1995, et al. (författare)
  • Structure evolution during phase separation in spin-coated ethylcellulose/hydroxypropylcellulose films
  • 2021
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 17:14, s. 3913-3922
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures. 
  •  
15.
  • Carmona, Pierre, 1995, et al. (författare)
  • Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films
  • 2022
  • Ingår i: Soft Matter. - : Royal Society of Chemistry. - 1744-683X .- 1744-6848. ; 18:16, s. 3206-3217
  • Tidskriftsartikel (refereegranskat)abstract
    • Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 μm for bicontinuous and between 0.6 and 1.6 μm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release. © 2022 The Royal Society of Chemistry
  •  
16.
  • Deschout, H., et al. (författare)
  • Disposable microfluidic chip with integrated light sheet illumination enables diagnostics based on membrane vesicles
  • 2014
  • Ingår i: 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013; Freiburg; Germany; 27 October 2013 through 31 October 2013. - 9781632666246
  • Konferensbidrag (refereegranskat)abstract
    • Cell-derived membrane vesicles that are released in body fluids are emerging as potential non-invasive biomarkers for diseases like cancer. Techniques capable of measuring the size and concentration of such membrane vesicles directly in body fluids are urgently needed. Here we report on a microfluidic chip with integrated light sheet illumination, and demonstrate accurate fluorescence Single Particle Tracking measurements of the size and concentration of membrane vesicles in cell culture medium and in interstitial fluid collected from primary human breast tumours.
  •  
17.
  • Deschout, Hendrik, et al. (författare)
  • Disposable microfluidic chip with integrated light sheet illumination enables diagnostics based on membrane vesicles
  • 2013
  • Ingår i: 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013; Freiburg; Germany; 27 October 2013 through 31 October 2013. ; 3, s. 2010-2012
  • Konferensbidrag (refereegranskat)abstract
    • Cell-derived membrane vesicles that are released in body fluids are emerging as potential non-invasive biomarkers for diseases like cancer. Techniques capable of measuring the size and concentration of such membrane vesicles directly in body fluids are urgently needed. Here we report on a microfluidic chip with integrated light sheet illumination, and demonstrate accurate fluorescence Single Particle Tracking measurements of the size and concentration of membrane vesicles in cell culture medium and in interstitial fluid collected from primary human breast tumours.
  •  
18.
  • Deschout, H., et al. (författare)
  • On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids
  • 2014
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 6:3, s. 1741-1747
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-derived membrane vesicles that are released in biofluids, like blood or saliva, are emerging as potential non-invasive biomarkers for diseases, such as cancer. Techniques capable of measuring the size and concentration of membrane vesicles directly in biofluids are urgently needed. Fluorescence single particle tracking microscopy has the potential of doing exactly that by labelling the membrane vesicles with a fluorescent label and analysing their Brownian motion in the biofluid. However, an unbound dye in the biofluid can cause high background intensity that strongly biases the fluorescence single particle tracking size and concentration measurements. While such background intensity can be avoided with light sheet illumination, current set-ups require specialty sample holders that are not compatible with high-throughput diagnostics. Here, a microfluidic chip with integrated light sheet illumination is reported, and accurate fluorescence single particle tracking size and concentration measurements of membrane vesicles in cell culture medium and in interstitial fluid collected from primary human breast tumours are demonstrated.
  •  
19.
  • Eriksson Barman, Sandra, 1985, et al. (författare)
  • New characterization measures of pore shape and connectivity applied to coatings used for controlled drug release
  • 2021
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier BV. - 1520-6017 .- 0022-3549. ; 110:7, s. 2753-2764
  • Tidskriftsartikel (refereegranskat)abstract
    • Pore geometry characterization-methods are important tools for understanding how pore structure influences properties such as transport through a porous material. Bottlenecks can have a large influence on transport and related properties. However, existing methods only catch certain types of bottleneck effects caused by variations in pore size. We here introduce a new measure, geodesic channel strength, which captures a different type of bottleneck effect caused by many paths coinciding in the same pore. We further develop new variants of pore size measures and propose a new way of visualizing 3-D characterization results using layered images. The new measures together with existing measures were used to characterize and visualize properties of 3-D FIB-SEM images of three leached ethyl-cellulose/hydroxypropyl-cellulose films. All films were shown to be anisotropic, and the strongest anisotropy was found in the film with lowest porosity. This film had very tortuous paths and strong geodesic channel-bottlenecks, while the paths through the other two films were relatively straight with well-connected pore networks. The geodesic channel strength was shown to give important new visual and quantitative insights about connectivity, and the new pore size measures provided useful information about anisotropies and inhomogeneities in the pore structures. The methods have been implemented in the freely available software MIST.
  •  
20.
  • Fager, Cecilia, 1990, et al. (författare)
  • 3D high spatial resolution visualisation and quantification of interconnectivity in polymer films
  • 2020
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier B.V.. - 0378-5173 .- 1873-3476. ; 587
  • Tidskriftsartikel (refereegranskat)abstract
    • A porous network acts as transport paths for drugs through films for controlled drug release. The interconnectivity of the network strongly influences the transport properties. It is therefore important to quantify the interconnectivity and correlate it to transport properties for control and design of new films. This work presents a novel method for 3D visualisation and analysis of interconnectivity. High spatial resolution 3D data on porous polymer films for controlled drug release has been acquired using a focused ion beam (FIB) combined with a scanning electron microscope (SEM). The data analysis method enables visualisation of pore paths starting at a chosen inlet pore, dividing them into groups by length, enabling a more detailed quantification and visualisation. The method also enables identification of central features of the porous network by quantification of channels where pore paths coincide. The method was applied to FIB-SEM data of three leached ethyl cellulose (EC)/hydroxypropyl cellulose (HPC) films with different weight percentages. The results from the analysis were consistent with the experimentally measured release properties of the films. The interconnectivity and porosity increase with increasing amount of HPC. The bottleneck effect was strong in the leached film with lowest porosity. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 62
Typ av publikation
tidskriftsartikel (54)
konferensbidrag (4)
annan publikation (2)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (56)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Röding, Magnus, 1984 (30)
Röding, Magnus (30)
Olsson, Eva, 1960 (15)
Särkkä, Aila, 1962 (14)
Rudemo, Mats, 1937 (13)
Lorén, Niklas, 1970 (12)
visa fler...
Loren, Niklas (9)
Braeckmans, K. (7)
Deschout, H. (6)
Nyden, Magnus (5)
Gebäck, Tobias, 1977 (5)
Nydén, Magnus, 1970 (4)
Carmona, Pierre, 199 ... (4)
von Corswant, C. (4)
Raemdonck, K. (4)
Bernin, Diana, 1979 (3)
Topgaard, Daniel (3)
Wendin, Karin (3)
von Corswant, Christ ... (3)
Olsson, Anna, 1985 (3)
Normann, Anne (3)
Miklavcic, Stanley J (3)
Hendrix, A. (3)
Stremersch, S. (3)
Maoddi, P. (3)
Mernier, G. (3)
Renaud, P. (3)
Jiguet, S. (3)
Bracke, M. (3)
Lagerkvist, Carl-Joh ... (2)
Abrahamsson, Christo ... (2)
Hellström, Magnus (2)
Longfils, Marco, 199 ... (2)
Rootzén, Holger, 194 ... (2)
Corswant, Christian ... (2)
Langton, Maud (2)
Bolin, David, 1983 (2)
Svensson, Olle (2)
Ameloot, Marcel (2)
Larsson, Emanuel (2)
Bergström, Ulrica (2)
Bergström, Per (2)
Hanson, Charlotta, 1 ... (2)
Steglich, Thomas, 19 ... (2)
Moldin, A. (2)
Krona, Annika (2)
Eklund, Patrik (2)
Bradley, Siobhan J. (2)
Kroon, Renee, 1982 (2)
Nann, Thomas (2)
visa färre...
Lärosäte
Chalmers tekniska högskola (45)
RISE (42)
Göteborgs universitet (37)
Lunds universitet (5)
Högskolan Kristianstad (3)
Umeå universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (62)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (47)
Teknik (25)
Medicin och hälsovetenskap (6)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy