SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rothe S.) "

Sökning: WFRF:(Rothe S.)

  • Resultat 11-20 av 49
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Bertoldo, E., et al. (författare)
  • Lithium-Containing Crystals for Light Dark Matter Search Experiments
  • 2020
  • Ingår i: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 199:1-2, s. 510-518
  • Tidskriftsartikel (refereegranskat)abstract
    • In the current direct dark matter search landscape, the leading experiments in the sub-GeV mass region mostly rely on cryogenic techniques which employ crystalline targets. One attractive type of crystals for these experiments is those containing lithium, due to the fact that 7Li is an ideal candidate to study spin-dependent dark matter interactions in the low mass region. Furthermore, 6Li can absorb neutrons, a challenging background for dark matter experiments, through a distinctive signature which allows the monitoring of the neutron flux directly on site. In this work, we show the results obtained with three different detectors based on LiAlO 2, a target crystal never used before in cryogenic experiments.
  •  
12.
  •  
13.
  • Sels, S., et al. (författare)
  • Doppler and sympathetic cooling for the investigation of short-lived radioactive ions
  • 2022
  • Ingår i: Physical Review Research. - 2643-1564. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • At radioactive ion beam (RIB) facilities, ions of short-lived radionuclides are cooled and bunched in buffer-gas-filled Paul traps to improve the ion-beam quality for subsequent experiments. To deliver even colder ions, beneficial to RIB experiments' sensitivity or accuracy, we employ Doppler and sympathetic cooling in a Paul trap cooler-buncher. The improved emittance of Mg+, K+, and O2+ ion beams is demonstrated by a reduced time-of-flight spread of the extracted ion bunches with respect to room-temperature buffer-gas cooling. Cooling externally-produced hot ions with energies of at least 7 eV down to a few Kelvin is achieved in a timescale of O(100 ms) by combining a low-pressure helium background gas with laser cooling. This is sufficiently short to cool short-lived radioactive ions. As an example of this technique's use for RIB research, the mass-resolving power in a multireflection time-of-flight mass spectrometer is shown to increase by up to a factor of 4.6 with respect to buffer-gas cooling. Simulations show good agreement with the experimental results and guide further improvements and applications. These results open a path to a significant emittance improvement and, thus, unprecedented ion-beam qualities at RIB facilities, achievable with standard equipment readily available. The same method provides opportunities for future high-precision experiments with radioactive cold trapped ions.
  •  
14.
  • Abdelhameed, A. H., et al. (författare)
  • First results from the CRESST-III low-mass dark matter program
  • 2019
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 100:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an Earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this paper we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1 eV. This result was obtained with a 23.6 g CaWO4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon (heat) signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at similar to 15 mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160 MeV/c(2).
  •  
15.
  • Abdelhameed, A. H., et al. (författare)
  • Geant4-based electromagnetic background model for the CRESST dark matter experiment
  • 2019
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 79:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) dark matter search experiment aims for the detection of dark matter particles via elastic scattering off nuclei in CaWO4 crystals. To understand the CRESST electromagnetic background due to the bulk contamination in the employed materials, a model based on Monte Carlo simulations was developed using the Geant4 simulation toolkit. The results of the simulation are applied to the TUM40 detector module of CRESST-II phase 2. We are able to explain up to (68 +/- 16)% of the electromagnetic background in the energy range between 1 and 40 keV.
  •  
16.
  • Au, M., et al. (författare)
  • In-source and in-trap formation of molecular ions in the actinide mass range at CERN-ISOLDE
  • 2023
  • Ingår i: Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. - 0168-583X. ; 541, s. 375-379
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of radioactive molecules for fundamental physics research is a developing interdisciplinary field limited dominantly by their scarce availability. In this work, radioactive molecular ion beams containing actinide nuclei extracted from uranium carbide targets are produced via the Isotope Separation On-Line technique at the CERN-ISOLDE facility. Two methods of molecular beam production are studied: extraction of molecular ion beams from the ion source, and formation of molecular ions from the mass-separated ion beam in a gas-filled radio-frequency quadrupole ion trap. Ion currents of U+, UO1-3+, UC1-3+, UF1-4+, UF1,2O1,2+ are reported. Metastable tantalum and uranium fluoride molecular ions are identified. Formation of UO1-3+, U(OH)1-3+, UC1-3+, UF1,2O1,2+ from mass-separated beams of U+, UF1,2+ with residual gas is observed in the ion trap. The effect of trapping time on molecular formation is presented.
  •  
17.
  •  
18.
  • Butler, P. A., et al. (författare)
  • Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive ^{222}Ra and ^{228}Ra Beams
  • 2020
  • Ingår i: Physical Review Letters. - 1079-7114. ; 124:4
  • Tidskriftsartikel (refereegranskat)abstract
    • There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.
  •  
19.
  • Butler, P. A., et al. (författare)
  • The observation of vibrating pear-shapes in radon nuclei
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment.
  •  
20.
  • Gadelshin, V. M., et al. (författare)
  • First laser ions at the CERN-MEDICIS facility
  • 2020
  • Ingår i: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540. ; 241:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The CERN-MEDICIS facility aims to produce emerging medical radionuclides for the theranostics approach in nuclear medicine with mass separation of ion beams. To enhance the radioisotope yield and purity of collected samples, the resonance ionization laser ion source MELISSA was constructed, and provided the first laser ions at the facility in 2019. Several operational tests were accomplished to investigate its performance in preparation for the upcoming production of terbium radioisotopes, which are of particular interest for medical applications. © 2020, The Author(s).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy