SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sana H.) srt2:(2020-2023)"

Search: WFRF:(Sana H.) > (2020-2023)

  • Result 11-14 of 14
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Decin, L., et al. (author)
  • (Sub)stellar companions shape the winds of evolved stars
  • 2020
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 369:6509, s. 1497-1500
  • Journal article (peer-reviewed)abstract
    • Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) could be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
  •  
12.
  • Friedman, Barbara Bodorkos, et al. (author)
  • Are People Ready for Personalized Brain Health? Perspectives of Research Participants in the Lifebrain Consortium
  • 2020
  • In: The Gerontologist. - : Oxford University Press. - 0016-9013 .- 1758-5341. ; 60:6, s. E374-E383
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND OBJECTIVES: A healthy brain is central to physical and mental well-being. In this multi-site, qualitative study, we investigated views and attitudes of adult participants in brain research studies on the brain and personalized brain health as well as interest in maintaining a healthy brain.DESIGN AND METHODS: We conducted individual interviews with 44 adult participants in brain research cohorts of the Lifebrain consortium in Spain, Norway, Germany, and the United Kingdom. The interviews were audio recorded, transcribed, and coded using a cross-country codebook. The interview data were analyzed using qualitative content analysis.RESULTS: Most participants did not focus on their own brain health and expressed uncertainty regarding how to maintain it. Those actively focusing on brain health often picked one specific strategy like diet or memory training. The participants were interested in taking brain health tests to learn about their individual risk of developing brain diseases, and were willing to take measures to maintain their brain health if personalized follow-up was provided and the measures had proven impact. The participants were interested in more information on brain health. No differences in responses were identified between age groups, sex, or countries.DISCUSSION AND IMPLICATIONS: Concise, practical, personalized, and evidence-based information about the brain may promote brain health. Based on our findings, we have launched an ongoing global brain health survey to acquire more extensive, quantitative, and representative data on public perception of personalized brain health.
  •  
13.
  • Khan, Farooq-Ahmad, et al. (author)
  • Ruthenium Nanoparticles Intercalated in Montmorillonite (nano-Ru@MMT) Is Highly Efficient Catalyst for the Selective Hydrogenation of 2-Furaldehyde in Benign Aqueous Medium
  • 2021
  • In: Catalysts. - : MDPI AG. - 2073-4344. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Chemoselective hydrogenation of 2-furaldehyde to furfuryl alcohol using green solvents is an important research area to get eco-friendly fuels and fine chemicals. Herein, we report ruthenium nanoparticles (similar to 1.8 nm) intercalated in montmorillonite as an efficient catalytic system, which can selectively hydrogenate 2-furaldehyde in a benign aqueous medium. The complete conversion was observed at 40 degrees C with 1 MPa H-2, the selectivity of furfuryl alcohol being >99%, and turnover number 1165. After a catalytic run, the montmorillonite-supported ruthenium nanoparticles can be recycled and reused without losing their activity and selectivity.
  •  
14.
  • Saracino, S., et al. (author)
  • Updated radial velocities and new constraints on the nature of the unseen source in NGC1850 BH1
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:2, s. 3162-3171
  • Journal article (peer-reviewed)abstract
    • A black hole candidate orbiting a luminous star in the Large Magellanic Cloud young cluster NGC 1850 (∼100 Myr) has recently been reported based on radial velocity and light-curve modelling. Subsequently, an alternative explanation has been suggested for the system: a bloated post-mass transfer secondary star (Minitial ∼ 4–5 M⊙ and Mcurrent ∼ 1–2 M⊙) with a more massive, yet luminous companion (the primary). Upon reanalysis of the MUSE spectra, we found that the radial velocity variations originally reported were underestimated (K2, revised = 176 ± 3 km s−1 versus K2, original = 140 ± 3 km s−1) because of the weighting scheme adopted in the full-spectrum fitting analysis. The increased radial velocity semi-amplitude translates into a system mass function larger than previously deduced (frevised = 2.83 M⊙versus foriginal = 1.42 M⊙). By exploiting the spectral disentangling technique, we place an upper limit of 10 per cent of a luminous primary source to the observed optical light in NGC1850 BH1, assuming that the primary and secondary are the only components contributing to the system. Furthermore, by analysing archival near-infrared data, we find clues to the presence of an accretion disc in the system. These constraints support a low-mass post-mass transfer star but do not provide a definitive answer whether the unseen component in NGC1850 BH1 is indeed a black hole. These results predict a scenario where, if a primary luminous source of mass M ≥ 4.7 M⊙ is present in the system (given the inclination and secondary mass constraints), it must be hidden in a optically thick disc to be undetected in the MUSE spectra
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-14 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view