SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sauter O) srt2:(2020-2024)"

Sökning: WFRF:(Sauter O) > (2020-2024)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Labit, B., et al. (författare)
  • Progress in the development of the ITER baseline scenario in TCV
  • 2024
  • Ingår i: Plasma Physics and Controlled Fusion. - 1361-6587 .- 0741-3335. ; 66:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Under the auspices of EUROfusion, the ITER baseline (IBL) scenario has been jointly investigated on AUG and TCV in the past years and this paper reports on the developments on TCV. Three ITER shapes, namely the JET, AUG and ITER IBL have been reproduced in TCV, illustrating that the higher the triangularity the larger the ELM perturbation and the more difficult it is to reach stationary states with q(95)< 3.6. It is found that the performance of TCV IBL is mainly limited by (neoclassical) tearing modes, in particular 2/1 modes which are triggered after a large ELM. It is demonstrated that the shorter the ELM period the larger beta(N) at the NTM onset. We show that these modes can be avoided with central X3 EC heating at relatively high q(95) and moderate beta(N). However, the lack of significant ECH at the high central densities obtained in TCV IBL scenario limits the duration of low q(95) cases to about four confinement times. During this time, density usually keeps peaking until (neoclassical) tearing modes are triggered. Nevertheless, the TCV IBL database covers the ITER target values (H-98y2 similar to 1, beta(N) similar to 1.8 at q(95 )similar to 3) and a slightly better confinement than requested for ITER is
  •  
12.
  • Romanelli, M., et al. (författare)
  • Code Integration, Data Verification, and Models Validation Using the ITER Integrated Modeling and Analysis System (IMAS) in EUROfusion
  • 2020
  • Ingår i: Fusion science and technology. - : Bellwether Publishing, Ltd.. - 1536-1055 .- 1943-7641. ; 76:8, s. 894-900
  • Tidskriftsartikel (refereegranskat)abstract
    • The ITER Integrated Modelling and Analysis System (IMAS) has been adopted by the EUROfusion Consortium as a platform to facilitate the analysis and verification of data from multiple tokamaks for the integration of physics codes and the validation of physics models for fusion plasma simulations. Data mapping tools have been developed to translate the tokamaks’ native data format into IMAS. The mapping required the adoption of standard coordinates, conventions on direction of vectors, signs of fields, and harmonization of physics units. The mapped data have been verified by running integrated simulations using Kepler workflows. Results of the test using IMAS data are reported here along with an assessment of the system for present and future fusion applications.
  •  
13.
  • Baetzner, Anke S., et al. (författare)
  • Preparing medical first responders for crises : a systematic literature review of disaster training programs and their effectiveness
  • 2022
  • Ingår i: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. - : BioMed Central (BMC). - 1757-7241. ; 30:1
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Adequate training and preparation of medical first responders (MFRs) are essential for an optimal performance in highly demanding situations like disasters (e.g., mass accidents, natural catastrophes). The training needs to be as effective as possible, because precise and effective behavior of MFRs under stress is central for ensuring patients’ survival and recovery. This systematic review offers an overview of scientifically evaluated training methods used to prepare MFRs for disasters. It identifies different effectiveness indicators and provides an additional analysis of how and to what extent the innovative training technologies virtual (VR) and mixed reality (MR) are included in disaster training research.Methods: The systematic review was conducted according to the PRISMA guidelines and focused specifically on (quasi-)experimental studies published between January 2010 and September 2021. The literature search was conducted via Web of Science and PubMed and led to the inclusion of 55 articles. Results: The search identified several types of training, including traditional (e.g., lectures, real-life scenario training) and technology-based training (e.g., computer-based learning, educational videos). Most trainings consisted of more than one method. The effectiveness of the trainings was mainly assessed through pre-post comparisons of knowledge tests or self-reported measures although some studies also used behavioral performance measures (e.g., triage accuracy). While all methods demonstrated effectiveness, the literature indicates that technology-based methods often lead to similar or greater training outcomes than traditional trainings. Currently, few studies systematically evaluated immersive VR and MR training.Conclusion: To determine the success of a training, proper and scientifically sound evaluation is necessary. Of the effectiveness indicators found, performance assessments in simulated scenarios are closest to the target behavior during real disasters. For valid yet inexpensive evaluations, objectively assessible performance measures, such as accuracy, time, and order of actions could be used. However, performance assessments have not been applied often. Furthermore, we found that technology-based training methods represent a promising approach to train many MFRs repeatedly and efficiently. These technologies offer great potential to supplement or partially replace traditional training. Further research is needed on those methods that have been underrepresented, especially serious gaming, immersive VR, and MR.
  •  
14.
  • Huynh, P., et al. (författare)
  • Modeling ICRH and ICRH-NBI Synergy in High Power JET Scenarios Using European Transport Simulator (ETS)
  • 2020
  • Ingår i: 23rd topical conference on radiofrequency power in plasmas. - : AIP Publishing.
  • Konferensbidrag (refereegranskat)abstract
    • The European Integrated Modelling effort (EU-IM) provides the European Transport Simulator (ETS) [1] which was designed to simulate arbitrary tokamak plasma discharges. Two new 1D Fokker-Planck solvers have recently been implemented within ETS: StixRedist [3] and FoPla [4]. To ensure the CPU time remains acceptable, the latter was parallelized with a generic and easy to implement method. In this paper, it will be shown how these modules were integrated in the ETS workflow in particular a first approach adopted to reach a consistency between wave and Fokker-Planck equation resolution. Also, the Verification and Validation efforts will be discussed. JET shots were analyzed and the ETS predictions were cross-checked against earlier validated codes external to the EU-IM effort, TRANSP [5] in particular, as well as against experimental neutron yield data. A good agreement was obtained, both when comparing the predictions with other codes for cases within their reach (minority or beam populations) and with experimental neutron yield data. Simulations illustrating the exploitation of the nonlinear collision operator when solving a set of coupled Fokker-Planck equations for cases when majority species play a key role will be also shown.
  •  
15.
  • Mariani, A., et al. (författare)
  • First-principle based predictions of the effects of negative triangularity on DTT scenarios
  • 2024
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 64:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmas with negative triangularity (NT) shape have been recently shown to be able to achieve H-mode levels of confinement in L-mode, avoiding detrimental edge localised modes. Therefore, this plasma geometry is now studied as a possible viable option for a future fusion reactor. Within this framework, an NT option is under investigation for the full power scenario of the Divertor Tokamak Test (DTT) facility, under construction in Italy, with δ t o p = − 0.32 / δ b o t t o m ≃ 0.02 top/bottom triangularity values at the separatrix. The transport properties of this scenario are studied in this work. Gyrokinetic GENE simulations and integrated modelling using ASTRA with the quasi-linear trapped gyro-Landau fluid (TGLF) model have been performed. The emerging picture from the ASTRA-TGLF runs with boundary conditions at ρ t o r = 0.94 is that, in the L-mode NT option, the larger peaking of the kinetic profiles in the edge region is not sufficient to recover the loss of the PT H-mode pedestal, and reach similar central temperature values. Two additional shapes are also considered, obtained by flipping the triangularity of the scenarios, to single out the effect of the triangularity sign. A negligible ‘direct’ effect of the triangularity is found for the L-mode, while a small beneficial effect is observed for the H-mode. The ASTRA-TGLF results are validated by GENE and TGLF stand-alone at two selected radii. GENE shows ITG dominant micro-instability and explains the small beneficial effect of the NT for the H-mode as due to a strong reduction of the heat fluxes, when reversing the triangularity, with a relatively high T i stiffness. An improvement of the predicted performances of the NT DTT scenario could come from ρ tor ≳ 0.9 , as indicated by some recent experiments at the tokamak à configuration variable (TCV) and ASDEX Upgrade.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy