SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saxena Richa) "

Sökning: WFRF:(Saxena Richa)

  • Resultat 11-20 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Kato, Norihiro, et al. (författare)
  • Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
  • 2015
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 47:11, s. 1282-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
  •  
12.
  • Lagou, Vasiliki, et al. (författare)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
13.
  • Lyon, Helen N., et al. (författare)
  • Common variants in the ENPP1 gene are not reproducibly associated with diabetes or obesity
  • 2006
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 55:11, s. 3180-3184
  • Tidskriftsartikel (refereegranskat)abstract
    • The common missense single nucleotide polymorphism (SNP) K121Q in the ectoenzyme nucleotide pyrophosphate phosphodiesterase (ENPP1) gene has recently been associated with type 2 diabetes in Italian, U.S., and South-Asian populations. A three-SNP haplotype, including K121Q, has also been associated with obesity and type 2 diabetes in French and Austrian populations. We set out to confirm these findings in several large samples. We genotyped the haplotype K121Q (rs1044498), rs1799774, and rs7754561 in 8,676 individuals of European ancestry with and without type 2 diabetes, in 1,900 obese and 930 lean individuals of European ancestry from the U.S. and Poland, and in 1,101 African-American individuals. Neither the K121Q missense polymorphism nor the putative risk haplotype were significantly associated with type 2 diabetes or BMI. Two SNPs showed suggestive evidence of association in a meta-analysis of our European ancestry samples. These SNPs were rs7754561 with type 2 diabetes 0.85 [95% CI 0.78-0.92], P = 0.00003) and rs1799774 with BMI (homozygotes of the delT-allele, 0.6 [0.42-0.88], P = 0.007). However, these findings are not supported by other studies. We did not observe a reproducible association between these three ENPP1 variants and BMI or type 2 diabetes.
  •  
14.
  • Lyssenko, Valeriya, et al. (författare)
  • Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion.
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 82-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies have shown that variation in MTNR1B (melatonin receptor 1B) is associated with insulin and glucose concentrations. Here we show that the risk genotype of this SNP predicts future type 2 diabetes (T2D) in two large prospective studies. Specifically, the risk genotype was associated with impairment of early insulin response to both oral and intravenous glucose and with faster deterioration of insulin secretion over time. We also show that the MTNR1B mRNA is expressed in human islets, and immunocytochemistry confirms that it is primarily localized in beta cells in islets. Nondiabetic individuals carrying the risk allele and individuals with T2D showed increased expression of the receptor in islets. Insulin release from clonal beta cells in response to glucose was inhibited in the presence of melatonin. These data suggest that the circulating hormone melatonin, which is predominantly released from the pineal gland in the brain, is involved in the pathogenesis of T2D. Given the increased expression of MTNR1B in individuals at risk of T2D, the pathogenic effects are likely exerted via a direct inhibitory effect on beta cells. In view of these results, blocking the melatonin ligand-receptor system could be a therapeutic avenue in T2D.
  •  
15.
  • Lyssenko, Valeriya, et al. (författare)
  • Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
  • 2011
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 60:9, s. 2424-2433
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic beta-cell function by potentiating insulin secretion and beta-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS-Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies.Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of beta-cell viability and proliferation. RESULTS-The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS-These findings support beta-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional beta-cell mass in humans. Diabetes 60:2424-2433, 2011
  •  
16.
  • Moore, Allan F, et al. (författare)
  • Extension of type 2 diabetes genome-wide association scan results in the diabetes prevention program
  • 2008
  • Ingår i: Diabetes. - Alexandria : American diabetes association. - 0012-1797 .- 1939-327X. ; 57:9, s. 2503-2510
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Genome-wide association scans (GWASs) have identified novel diabetes-associated genes. We evaluated how these variants impact diabetes incidence, quantitative glycemic traits, and response to preventive interventions in 3,548 subjects at high risk of type 2 diabetes enrolled in the Diabetes Prevention Program (DPP), which examined the effects of lifestyle intervention, metformin, and troglitazone versus placebo.RESEARCH DESIGN AND METHODS: We genotyped selected single nucleotide polymorphisms (SNPs) in or near diabetes-associated loci, including EXT2, CDKAL1, CDKN2A/B, IGF2BP2, HHEX, LOC387761, and SLC30A8 in DPP participants and performed Cox regression analyses using genotype, intervention, and their interactions as predictors of diabetes incidence. We evaluated their effect on insulin resistance and secretion at 1 year.RESULTS: None of the selected SNPs were associated with increased diabetes incidence in this population. After adjustments for ethnicity, baseline insulin secretion was lower in subjects with the risk genotype at HHEX rs1111875 (P = 0.01); there were no significant differences in baseline insulin sensitivity. Both at baseline and at 1 year, subjects with the risk genotype at LOC387761 had paradoxically increased insulin secretion; adjustment for self-reported ethnicity abolished these differences. In ethnicity-adjusted analyses, we noted a nominal differential improvement in beta-cell function for carriers of the protective genotype at CDKN2A/B after 1 year of troglitazone treatment (P = 0.01) and possibly lifestyle modification (P = 0.05).CONCLUSIONS: We were unable to replicate the GWAS findings regarding diabetes risk in the DPP. We did observe genotype associations with differences in baseline insulin secretion at the HHEX locus and a possible pharmacogenetic interaction at CDKNA2/B.
  •  
17.
  • Nikpay, Majid, et al. (författare)
  • A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:10, s. 1121-1121
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of similar to 185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.
  •  
18.
  • Ollila, Hanna M., et al. (författare)
  • Nightmares share genetic risk factors with sleep and psychiatric traits
  • 2024
  • Ingår i: Translational Psychiatry. - : Springer Nature. - 2158-3188. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Nightmares are vivid, extended, and emotionally negative or negative dreams that awaken the dreamer. While sporadic nightmares and bad dreams are common and generally harmless, frequent nightmares often reflect underlying pathologies of emotional regulation. Indeed, insomnia, depression, anxiety, or alcohol use have been associated with nightmares in epidemiological and clinical studies. However, the connection between nightmares and their comorbidities are poorly understood. Our goal was to examine the genetic risk factors for nightmares and estimate correlation or causality between nightmares and comorbidities. We performed a genome-wide association study (GWAS) in 45,255 individuals using a questionnaire-based assessment on the frequency of nightmares during the past month and genome-wide genotyping data. While the GWAS did not reveal individual risk variants, heritability was estimated at 5%. In addition, the genetic correlation analysis showed a robust correlation (rg > 0.4) of nightmares with anxiety (rg = 0.671, p = 7.507e−06), depressive (rg = 0.562, p = 1.282e−07) and posttraumatic stress disorders (rg = 0.4083, p = 0.0152), and personality trait neuroticism (rg = 0.667, p = 4.516e−07). Furthermore, Mendelian randomization suggested causality from insomnia to nightmares (beta = 0.027, p = 0.0002). Our findings suggest that nightmares share genetic background with psychiatric traits and that insomnia may increase an individual’s liability to experience frequent nightmares. Given the significant correlations with psychiatric and psychological traits, it is essential to grow awareness of how nightmares affect health and disease and systematically collect information about nightmares, especially from clinical samples and larger cohorts. 
  •  
19.
  • Orho-Melander, Marju, et al. (författare)
  • Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:11, s. 3112-3121
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCYR locus in samples of non-European ancestry and to fine-map across the associated genomic interval. RESEARCH DESIGN AND METHODS-We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the similar to 417-kb region of linkage disequilibrium. spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS-We provide comprehensive evidence that GCYR rs780094 is associated with opposite effects on fasting plasma triglyceride (P-meta = 3 x 10(-56)) and glucose (P-meta = 1 x 10(-13)) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 x 10(-5)). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r(2) = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS-These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism. Diabetes 57:3112-3121, 2008
  •  
20.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 31
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (1)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Saxena, Richa (31)
Groop, Leif (21)
Altshuler, David (19)
Lyssenko, Valeriya (13)
Boehnke, Michael (13)
Tuomi, Tiinamaija (12)
visa fler...
Kuusisto, Johanna (12)
Laakso, Markku (12)
Jackson, Anne U. (12)
Florez, Jose C. (12)
McCarthy, Mark I (11)
Tuomilehto, Jaakko (11)
Isomaa, Bo (10)
Mohlke, Karen L (10)
Barroso, Ines (10)
Palmer, Colin N. A. (10)
Voight, Benjamin F. (10)
Collins, Francis S. (10)
Lindgren, Cecilia M. (10)
Wareham, Nicholas J. (9)
Langenberg, Claudia (9)
Shuldiner, Alan R. (9)
Daly, Mark J. (9)
Morris, Andrew D (9)
Hirschhorn, Joel N. (9)
Illig, Thomas (9)
Boerwinkle, Eric (9)
Bonnycastle, Lori L. (9)
Nilsson, Peter (8)
Salomaa, Veikko (8)
Deloukas, Panos (8)
Thorleifsson, Gudmar (8)
Stefansson, Kari (8)
Abecasis, Goncalo R. (8)
Gieger, Christian (8)
Loos, Ruth J F (8)
Hofman, Albert (8)
Meigs, James B. (8)
Prokopenko, Inga (8)
Thorsteinsdottir, Un ... (7)
Wilson, James F. (7)
Johnson, Toby (7)
Zeggini, Eleftheria (7)
Dupuis, Josée (7)
Kivimaki, Mika (7)
Kumari, Meena (7)
Frayling, Timothy M (7)
Vollenweider, Peter (7)
Grallert, Harald (7)
Swift, Amy J. (7)
visa färre...
Lärosäte
Lunds universitet (26)
Umeå universitet (8)
Uppsala universitet (8)
Karolinska Institutet (8)
Göteborgs universitet (2)
Handelshögskolan i Stockholm (1)
visa fler...
Högskolan i Skövde (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (29)
Naturvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy