SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schwartzkopf Matthias) "

Sökning: WFRF:(Schwartzkopf Matthias)

  • Resultat 11-20 av 61
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Chen, Wei, et al. (författare)
  • In situ Grazing-Incidence Small-Angle X-ray Scattering Observation of Gold Sputter Deposition on a PbS Quantum Dot Solid
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : NLM (Medline). - 1944-8244 .- 1944-8252. ; 12:41, s. 46942-46952
  • Tidskriftsartikel (refereegranskat)abstract
    • For PbS quantum dot (QD)-based optoelectronic devices, gold is the most frequently used electrode material. In most device architectures, gold is in direct contact with the QD solid. To better understand the formation of the interface between gold and a close-packed QD layer at an early stage, in situ grazing-incidence small-angle X-ray scattering is used to observe the gold sputter deposition on a 1,2-ethanedithiol (EDT)-treated PbS QD solid. In the kinetics of gold layer growth, the forming and merging of small gold clusters (radius less than 1.6 nm) are observed at the early stages. The thereby formed medium gold clusters (radius between 1.9-2.4 nm) are influenced by the QDs' templating effect. Furthermore, simulations suggest that the medium gold clusters grow preferably along the QDs' boundaries rather than as a top coating of the QDs. When the thickness of the sputtered gold layer reaches 6.25 nm, larger gold clusters with a radius of 5.3 nm form. Simultaneously, a percolation layer with a thickness of 2.5 nm is established underneath the gold clusters. This fundamental understanding of the QD-gold interface formation will help to control the implementation of sputtered gold electrodes on close-packed QD solids in device manufacturing processes.
  •  
12.
  • Gensch, Marc, et al. (författare)
  • Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:32, s. 29416-29426
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly (methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.
  •  
13.
  • Gensch, Marc, et al. (författare)
  • Correlating Optical Reflectance with the Topology of Aluminum Nanocluster Layers Growing on Partially Conjugated Diblock Copolymer Templates
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:47, s. 56663-56673
  • Tidskriftsartikel (refereegranskat)abstract
    • Large-scale fabrication of metal cluster layers for usage in sensor applications and photovoltaics is a huge challenge. Physical vapor deposition offers large-scale fabrication of metal cluster layers on templates and polymer surfaces. In the case of aluminum (Al), only little is known about the formation and interaction of Al clusters during sputter deposition. Complex polymer surface morphologies can tailor the deposited Al cluster layer. Here, a poly(methyl methacrylate)-block-poly(3-hexylthiophen-2,5-diyl) (PMMA-b-P3HT) diblock copolymer template is used to investigate the nanostructure formation of Al cluster layers on the different polymer domains and to compare it with the respective homopolymers PMMA and P3HT. The optical properties relevant for sensor applications are monitored with ultraviolet-visible (UV-vis) measurements during the sputter deposition. The formation of Al clusters is followed in situ with grazing-incidence small-angle X-ray scattering (GISAXS), and the chemical interaction is revealed by X-ray photoelectron spectroscopy (XPS). Furthermore, atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM) yield topographical information about selective wetting of Al on the P3HT domains and embedding in the PMMA domains in the early stages, followed by four distinct growth stages describing the Al nanostructure formation.
  •  
14.
  • Gensch, Marc, et al. (författare)
  • Selective Silver Nanocluster Metallization on Conjugated Diblock Copolymer Templates for Sensing and Photovoltaic Applications
  • 2021
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:4, s. 4245-4255
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymer-metal composite films with nanostructured metal and/or polymer interfaces show a significant perspective for optoelectronic applications, for example, as sensors or in organic photovoltaics (OPVs). The polymer components used in these devices are mostly nanostructured conductive polymers with conjugated pi-electron systems. Enhanced OPV's power conversion efficiencies or sensor sensitivity can be achieved by selective metal deposition on or into polymer templates. In this study, we exploit time-resolved grazing-incidence X-ray scattering to observe the metal-polymer interface formation and the cluster crystallite size in situ during silver (Ag) sputter deposition on a poly(3-hexylthiophene-2,5-diyl)-b-poly(methyl methacrylate) (PMMA-b-P3HT) template. We compare the arising nanoscale morphologies with electronic properties, determine Ag growth regimes, and quantify the selective Ag growth for the diblock copolymer (DBC) template using the corresponding homopolymer thin films (P3HT and PMMA) as a reference. Hence, we are able to describe the influence of the respective polymer blocks and substrate effects on the Ag cluster percolation: the percolation threshold is correlated with the insulator-to-metal transition measured in situ with resistance measurements during the sputter deposition. The Ag cluster percolation on PMMA-b-P3HT starts already on the network of the hexagonal P3HT domain before a complete metal film covers the polymer surface, which is complemented by microscopic measurements. In general, this study demonstrates a possible method for the selective Ag growth as a scaffold for electrode preparation in nanoelectronics and for energy harvesting applications.
  •  
15.
  • Glier, Tomke E., et al. (författare)
  • Functional Printing of Conductive Silver-Nanowire Photopolymer Composites
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Omega/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.
  •  
16.
  • Guo, Renjun, et al. (författare)
  • Degradation mechanisms of perovskite solar cells under vacuum and one atmosphere of nitrogen
  • 2021
  • Ingår i: Nature Energy. - : Springer Nature. - 2058-7546. ; 6:10, s. 977-
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive studies have focused on improving the operational stability of perovskite solar cells, but few have surveyed the fundamental degradation mechanisms. One aspect overlooked in earlier works is the effect of the atmosphere on device performance during operation. Here we investigate the degradation mechanisms of perovskite solar cells operated under vacuum and under a nitrogen atmosphere using synchrotron radiation-based operando grazing-incidence X-ray scattering methods. Unlike the observations described in previous reports, we find that light-induced phase segregation, lattice shrinkage and morphology deformation occur under vacuum. Under nitrogen, only lattice shrinkage appears during the operation of solar cells, resulting in better device stability. The different behaviour under nitrogen is attributed to a larger energy barrier for lattice distortion and phase segregation. Finally, we find that the migration of excessive PbI2 to the interface between the perovskite and the hole transport layer degrades the performance of devices under vacuum or under nitrogen. Understanding degradation mechanisms in perovskite solar cells is key to their development. Now, Guo et al. show a greater degradation of the perovskite structure and morphology for devices operated under vacuum than under nitrogen.
  •  
17.
  • Gupta, Pooja, et al. (författare)
  • Oblique angle deposited FeCo multilayered nanocolumnar structure : Magnetic anisotropy and its thermal stability in polycrystalline thin films
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 590, s. 153056-
  • Tidskriftsartikel (refereegranskat)abstract
    • Iron-Cobalt (FeCo) columnar, multilayered structure is prepared by depositing several thin FeCo layers by varying the angle between the surface normal and the evaporation direction as 0 (normal) and 60(oblique), alternatively. In situ X-ray scattering and magneto-optical Kerr effect (MOKE) measurements established the evolution of magnetic properties with that of the morphology and structure of the multilayer. The strong shape anisotropy and compressive stress of nanocolumns in alternative FeCo layers resulted in a well-defined uniaxial magnetic anisotropy (UMA) with the easy axis of magnetization along the projection of the tilted nanocolumns in the film plane. The stress in the film provides minimization of magnetoelastic energy along the in-plane column direction, which couples with the columnar shape anisotropy energies and results in the preferential orientation of the magnetic easy axis along the oblique angle deposition direction in the film plane. Drastic reduction in the in-plane UMA after annealing at 450 C is attributed to the merging of columns and removal of stresses after heat treatment. The present study opens a new pathway to produce magnetically anisotropic multilayer structures using single material and thus may have prominent implications for future technological devices.
  •  
18.
  • Heger, Julian E., et al. (författare)
  • Superlattice deformation in quantum dot films on flexible substrates via uniaxial strain
  • 2023
  • Ingår i: Nanoscale Horizons. - : Royal Society of Chemistry (RSC). - 2055-6764 .- 2055-6756. ; 8:3, s. 383-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The superlattice in a quantum dot (QD) film on a flexible substrate deformed by uniaxial strain shows a phase transition in unit cell symmetry. With increasing uniaxial strain, the QD superlattice unit cell changes from tetragonal to cubic to tetragonal phase as measured with in situ grazing-incidence small-angle X-ray scattering (GISAXS). The respective changes in the optoelectronic coupling are probed with photoluminescence (PL) measurements. The PL emission intensity follows the phase transition due to the resulting changing inter-dot distances. The changes in PL intensity accompany a redshift in the emission spectrum, which agrees with the Forster resonance energy transfer (FRET) theory. The results are essential for a fundamental understanding of the impact of strain on the performance of flexible devices based on QD films, such as wearable electronics and next-generation solar cells on flexible substrates.
  •  
19.
  • Herzog, Gerd, et al. (författare)
  • In-situ GISAXS investigation of polystyrene nanoparticle spray deposition onto a silicon substrate
  • 2013
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 29:36, s. 11260-11266
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.
  •  
20.
  • Hohn, Nuri, et al. (författare)
  • Impact of Catalytic Additive on Spray Deposited and Nanoporous Titania in Films Observed via in Situ X-ray Scattering : Implications for hanced Photovoltaics
  • 2018
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 1:8, s. 4227-4235
  • Tidskriftsartikel (refereegranskat)abstract
    • With the aim of obtaining nanostructured titania thin films for the tential use in hybrid or dye sensitized solar cells, the amphiphilic block copolymer polystyrene-b-poly(ethylene oxide) is employed as a ructure directing template in combination with solgel chemistry. For sy upscaling, spraying is used as a deposition technique. In situ azing incidence small-angle X-ray scattering (GISAXS) measurements are rformed during spraying and show that most titania structures are ready formed within the solution prior to deposition. However, ructural rearrangement is enabled during the deposition period when all amounts of hydrochloric acid (HCl) are used as a catalytic ditive to the spray solution. This behavior is ascribed to an altering the reaction dynamics and phase separation in the presence of HCl, ich significantly improves the templating effect of the employed block copolymer. With HCl as an additive the final nanoscale rphologies exhibit smaller pore sizes and strongly enhanced order as mpared to thin films sprayed from solutions that do not contain HCl as antified with atomic force microscopy, scanning electron microscopy, d GISAXS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 61

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy