SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stamatikos M.) "

Sökning: WFRF:(Stamatikos M.)

  • Resultat 11-20 av 143
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Abbasi, R., et al. (författare)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
12.
  • Abbasi, R., et al. (författare)
  • Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory has been continuously taking data to search for O(0.5–10) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O(10) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.
  •  
13.
  • Aartsen, M. G., et al. (författare)
  • Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
  •  
14.
  • Aartsen, M. G., et al. (författare)
  • Searches for relativistic magnetic monopoles in IceCube
  • 2016
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 76:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (nu >= 0.76 c) and mildly relativistic (nu >= 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10(-18) cm(-2) s(-1) sr(-1). This is an improvement of almost two orders of magnitude over previous limits.
  •  
15.
  • Aartsen, M. G., et al. (författare)
  • The Detection Of A Sn Iin In Optical Follow-Up Observations Of Icecube Neutrino Events
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube neutrino observatory pursues a follow-up program selecting interesting neutrino events in real-time and issuing alerts for electromagnetic follow-up observations. In 2012 March, the most significant neutrino alert during the first three years of operation was issued by IceCube. In the follow-up observations performed by the Palomar Transient Factory (PTF), a Type IIn supernova (SN IIn) PTF12csy was found 0.degrees 2 away from the neutrino alert direction, with an error radius of 0.degrees 54. It has a redshift of z = 0.0684, corresponding to a luminosity distance of about 300 Mpc and the Pan-STARRS1 survey shows that its explosion time was at least 158 days (in host galaxy rest frame) before the neutrino alert, so that a causal connection is unlikely. The a posteriori significance of the chance detection of both the neutrinos and the SN at any epoch is 2.2 sigma within IceCube's 2011/12 data acquisition season. Also, a complementary neutrino analysis reveals no long-term signal over the course of one year. Therefore, we consider the SN detection coincidental and the neutrinos uncorrelated to the SN. However, the SN is unusual and interesting by itself: it is luminous and energetic, bearing strong resemblance to the SN IIn 2010jl, and shows signs of interaction of the SN ejecta with a dense circumstellar medium. High-energy neutrino emission is expected in models of diffusive shock acceleration, but at a low, non-detectable level for this specific SN. In this paper, we describe the SN PTF12csy and present both the neutrino and electromagnetic data, as well as their analysis.
  •  
16.
  • Aartsen, M. G., et al. (författare)
  • A Combined Maximum-Likelihood Analysis Of The High-Energy Astrophysical Neutrino Flux Measured With Icecube
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 809:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies greater than or similar to 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, nu(mu)-induced tracks from the Northern Hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle, and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index -2.50 +/- 0.09 and a flux at 100 TeV of (6.7(-1.2)(+1.1)) x 10(-18) GeV-1 s(-1) sr(-1) cm(-2). Under the same assumptions, an unbroken power law with index -2 is disfavored with a significance of 3.8 sigma (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 sigma (p = 1.7%) if instead we compare the best fit to a spectrum with index -2 that has an exponential cut-off at high energies. Allowing the electron-neutrino flux to deviate from the other two flavors, we find a nu(e) fraction of 0.18 +/- 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay-dominated sources, is rejected with a significance of 3.6 sigma ( p = 0.014%).
  •  
17.
  • Aartsen, M. G., et al. (författare)
  • Characterization of the atmospheric muon flux in IceCube
  • 2016
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 78, s. 1-27
  • Tidskriftsartikel (refereegranskat)abstract
    • Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric lepton fluxes from prompt decays of short-lived hadrons. In this paper, techniques for the extraction of physical measurements from atmospheric muon events are described and first results are presented. The multiplicity spectrum of TeV muons in cosmic ray air showers for primaries in the energy range from the knee to the ankle is derived and found to be consistent with recent results from surface detectors. The single muon energy spectrum is determined up to PeV energies and shows a clear indication for the emergence of a distinct spectral component from prompt decays of short-lived hadrons. The magnitude of the prompt flux, which should include a substantial contribution from light vector meson di-muon decays, is consistent with current theoretical predictions. The variety of measurements and high event statistics can also be exploited for the evaluation of systematic effects. In the course of this study, internal inconsistencies in the zenith angle distribution of events were found which indicate the presence of an unexplained effect outside the currently applied range of detector systematics. The underlying cause could be related to the hadronic interaction models used to describe muon production in air showers.
  •  
18.
  • Aartsen, M. G., et al. (författare)
  • Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube
  • 2015
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 115:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of nu(e) and nu(tau) charged-current and neutral-current ( cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35 000 muon neutrinos from the Northern sky is extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7 sigma significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor at a level of Phi(E-nu) = 9.9(-3.4)(+3.9) x 10(-19) GeV-1 cm(-2) sr(-1) s(-1) (E-nu/100 TeV)(-2), consistent with IceCube's Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed. We find a spectral index of 2.2(-0.2)(+0.2), which is also in good agreement with the Southern Hemisphere result.
  •  
19.
  • Aartsen, M. G., et al. (författare)
  • Measurement of the Atmospheric nu(e) Spectrum with IceCube
  • 2015
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 91:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a measurement of the atmospheric nu(e) spectrum at energies between 0.1 and 100 TeV using data from the first year of the complete IceCube detector. Atmospheric nu(e) originate mainly from the decays of kaons produced in cosmic-ray air showers. This analysis selects 1078 fully contained events in 332 days of live time, and then identifies those consistent with particle showers. A likelihood analysis with improved event selection extends our previous measurement of the conventional v(e) fluxes to higher energies. The data constrain the conventional nu(e) flux to be 1.3(-0.3)(+0.4) times a baseline prediction from a Honda's calculation, including the knee of the cosmic-ray spectrum. A fit to the kaon contribution (xi) to the neutrino flux finds a kaon component that is xi = 1.3(-0.4)(+0.5) times the baseline value. The fitted/measured prompt neutrino flux from charmed hadron decays strongly depends on the assumed astrophysical flux and shape. If the astrophysical component follows a power law, the result for the prompt flux is 0.0(-0.0)(+3.0) times a calculated flux based on the work by Enberg, Reno, and Sarcevic.
  •  
20.
  • Aartsen, M. G., et al. (författare)
  • Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube
  • 2018
  • Ingår i: Nature Physics. - : NATURE PUBLISHING GROUP. - 1745-2473 .- 1745-2481. ; 14:9, s. 961-966
  • Tidskriftsartikel (refereegranskat)abstract
    • Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10(-28) level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 143

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy