SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tirado Carlos) "

Sökning: WFRF:(Tirado Carlos)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Nilsson, Mats E., et al. (författare)
  • Psychoacoustic evidence for stronger discrimination suppression of spatial information conveyed by lag-click interaural time than interaural level differences
  • 2019
  • Ingår i: Journal of the Acoustical Society of America. - : Acoustical Society of America (ASA). - 0001-4966 .- 1520-8524. ; 145:1, s. 512-524
  • Tidskriftsartikel (refereegranskat)abstract
    • Listeners have limited access to spatial information in lagging sound, a phenomenon known as discrimination suppression. It is unclear whether discrimination suppression works differently for interaural time differences (ITDs) and interaural level differences (ILDs). To explore this, three listeners assessed the lateralization (left or right) and detection (present or not) of lag clicks with a large fixed ITD (350 mu s) or ILD (10 dB) following a diotic lead click, with inter-click intervals (ICIs) of 0.125-256 ms. Performance was measured on a common scale for both cues: the lag-lead amplitude ratio [dB] at 75% correct answers. The main finding was that the lateralization thresholds, but not detection thresholds, were more strongly elevated for ITD-only than ILD-only clicks at intermediate ICIs (1-8 ms) in which previous research has found the strongest discrimination suppression effects. Altogether, these findings suggest that discrimination suppression involves mechanisms that make spatial information conveyed by lag-click ITDs less accessible to listeners than spatial information conveyed by lag-click ILDs.
  •  
12.
  • Tirado Aldana, Carlos, 1991- (författare)
  • The psychophysics of human echolocation
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Echolocation is the capacity to detect, localize, discriminate, and, overall, gather spatial information from sound reflections. Since we began studying it in humans, we have learned several things. First, most humans can echolocate to some degree. Second, the capacity to echolocate is related to: the type and size of the object that the individual is trying to echolocate; how well the individual can use self-generated or artificial signals; and the distance to the object. Third, the blind tend to perform better than the sighted, although some sighted individuals can perform as well as the blind. It has been speculated that expert echolocators are capable of unlearning the precedence effect (PE), which is the tendency of our auditory system to prioritize spatial information coming from the first wave front instead of the spatial information from the second wave front. This would allow them to obtain more spatial information from echoes, but there is little research linking the PE to echolocation skills, which is why my thesis research has explored this matter. Another contribution of my thesis research was to introduce two new concepts: echo-detection and echo-localization. Echo-detection is the ability to detect an object using echoes as the main cue (“Is the object there, yes or no?”), whereas echo-localization is the ability both to detect and also localize an object using echoes as the main cue (“Is the object situated to the right or left?”). The reason for dividing echolocation into these two tasks is that detecting an echo does not necessarily entail knowing its location. No previous study has compared these two distinct abilities. Echo-detection and echo-localization, though linked to each other, could be influenced by different mechanisms. The aim of this thesis was to explore individual differences in echo-detection, echo-localization, and other fundamental psychoacoustic abilities (i.e., PE and different types of masking) in inexperienced, sighted individuals. This included using a novel tool to train and assess echolocation skills: the Echobot. The Echobot is a machine that automates stimulus presentation. It allows an aluminum disk to be moved to different distances and different echolocation signals to be tested simultaneously. Its main advantage consists of facilitating the use of rigorous psychophysical methods that would otherwise take a long time to perform correctly. Studies I and II focused on individual differences in fundamental hearing abilities that are prerequisites for echo-detection and echo-localization (i.e., PE components and different types of masking). Studies III and IV focused on using the Echobot to study individual performance differences in echo-detection and echo-localization tasks. Overall, the results indicate that echolocation was possible for most participants, regardless of the method or signal used. There were substantial individual differences, and a performance gap between echo-detection and echo-localization appeared in several individuals. Echo-localization was usually more difficult than echo-detection, since spatial information was the hardest to retrieve from the localization tasks. It was possible to close the task performance gap in some individuals through training, but only for time intervals between direct and reflected sound of >20 ms, for which the PE might not operate. Hence, the possibility of “unlearning” the PE to improve echolocation skills remains speculative. Finally, the Echobot proved useful for studying echolocation. Taken together, these results suggest that independent mechanisms make the localization of spatial information more difficult than pure detection. However, in long-inter-click-interval (ICI) conditions, the neural mechanisms are likely mediated by attention and cognitive processes, which are more plastic, and participants can learn to obtain echo-localization information as effectively as echo-detection information. In short-ICI conditions, neural mechanisms seem more related to peripheral and temporal processing, which are potentially less plastic. Further research into individual differences in temporal processing, using brain-imaging techniques such as EEG, might help us understand the different mechanisms influencing echo-detection and echo-localization.
  •  
13.
  • Tirado, Carlos, et al. (författare)
  • Comparing Echo-Detection and Echo-Localization in Sighted Individuals
  • 2021
  • Ingår i: Perception. - : SAGE Publications. - 0301-0066 .- 1468-4233. ; 50:4, s. 308-327
  • Tidskriftsartikel (refereegranskat)abstract
    • Echolocation is the ability to gather information from sound reflections. Most previous studies have focused on the ability to detect sound reflections, others on the ability to localize sound reflections, but no previous study has compared the two abilities in the same individuals. Our study compared echo-detection (reflecting object present or not?) and echo-localization (reflecting object to the left or right?) in 10 inexperienced sighted participants across 10 distances (1-4.25 m) to the reflecting object, using an automated system for studying human echolocation. There were substantial individual differences, particularly in the performance on the echo-localization task. However, most participants performed better on the detection than the localization task, in particular at the closest distances (1 and 1.7 m), illustrating that it sometimes may be hard to perceive whether an audible reflection came from the left or right.
  •  
14.
  • Tirado, Carlos, et al. (författare)
  • Individual differences in the ability to access spatial information in lag-clicks
  • 2021
  • Ingår i: Journal of the Acoustical Society of America. - : Acoustical Society of America (ASA). - 0001-4966 .- 1520-8524. ; 149:5, s. 2963-2975
  • Tidskriftsartikel (refereegranskat)abstract
    • It may be difficult to determine whether a dichotic lag-click points to the left or right when preceded by a diotic lead-click. Previous research suggests that this loss of spatial information is most prominent at inter-click intervals (ICIs) <10 ms. However, a study by Nilsson, Tirado, and Szychowska [(2019). J. Acoust. Soc. Am. 145, 512–524] found support for loss of spatial information in lag-clicks at much longer ICIs using a stimulus setup differing from those in previous research. The present study used a setup similar to that of the Nilsson, Tirado, and Szychowska study [(2019). J. Acoust. Soc. Am. 145, 512–524] to measure 13 listeners' ability to lateralize (left versus right) and detect (present versus absent) the lag-click in lead–lag click pairs with ICIs of 6–48 ms. The main finding was distinct individual differences in performance. Some listeners could lateralize lag-clicks all the way down to their detection threshold, whereas others had lateralization thresholds substantially higher than their detection thresholds, i.e., they could not lateralize lag-clicks that they could easily detect. Two such listeners trained for 30 days and managed to improve their lateralization thresholds to reach their detection thresholds, but only at longer ICIs (>20 ms), suggesting different mechanisms underlying lag-click lateralization at short versus long ICIs.
  •  
15.
  • Tirado, Carlos, et al. (författare)
  • The Echobot : An automated system for stimulus presentation in studies of human echolocation
  • 2019
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Echolocation is the detection and localization of objects by listening to the sounds they reflect. Early studies of human echolocation used real objects that the experimental leader positioned manually before each experimental trial. The advantage of this procedure is the use of realistic stimuli; the disadvantage is that manually shifting stimuli between trials is very time consuming making it difficult to use psychophysical methods based on the presentation of hundreds of stimuli. The present study tested a new automated system for stimulus presentation, the Echobot, that overcomes this disadvantage. We tested 15 sighted participants with no prior experience of echolocation on their ability to detect the reflection of a loudspeaker-generated click from a 50 cm circular aluminum disk. The results showed that most participants were able to detect the sound reflections. Performance varied considerably, however, with mean individual thresholds of detection ranging from 1 to 3.2 m distance from the disk. Three participants in the loudspeaker experiment also tested using self-generated vocalization. One participant performed better using vocalization and one much worse than in the loudspeaker experiment, illustrating that performance in echolocation experiments using vocalizations not only measures the ability to detect sound reflections, but also the ability to produce efficient echolocation signals. Overall, the present experiments show that the Echobot may be a useful tool in research on human echolocation.
  •  
16.
  • Tirado, Carlos, et al. (författare)
  • The strength of weak embodiment
  • 2018
  • Ingår i: International Journal of Psychological Research. - : Universidad de San Buenaventura. - 2011-2084 .- 2011-7922. ; 11:2, s. 77-85
  • Tidskriftsartikel (refereegranskat)abstract
    • While popular within some cognitive science approaches, the embodiment approach has still found resistance, particularly in light of evidence arguing against strong forms of embodiment. Among other things, the embodiment approach breaks away from the Cartesian ontology of the modulatory system. We claim that the advantages of the embodiment approach are: a) it grounds cognition into modal experience, b) it is harmonious with a materialist philosophy of mind (emergent materialism), and c) it is supported by experimental research in various fields. However, embodiment must still address abstractions, theoretical misunderstandings (representations vs non-representations) and neuroscientific findings that challenge the extension and relevance of sensorimotor properties into cognitive processes. While the strong version of embodiment is seriously challenged by conceptual and physiological setbacks, its weak version is supported by compelling evidence. We suggest future research focus on the psychophysiological bases of grounded cognition and redirect efforts towards the field of cross-modal correspondence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Tirado, Carlos (13)
Marmolejo-Ramos, Fer ... (6)
Nilsson, Mats E. (4)
Larsson, Maria (2)
Malhi, Yadvinder (2)
Phillips, Oliver L. (2)
visa fler...
Carvalho, Fernanda A ... (2)
ter Steege, Hans (2)
Barlow, Jos (2)
Berenguer, Erika (2)
Arshamian, Artin (2)
Yamada, Yuki (2)
Damasco, Gabriel, 19 ... (2)
Balslev, Henrik (2)
Holmgren, Milena (2)
Feeley, Kenneth J. (2)
Huamantupa-Chuquimac ... (2)
Ospina, Raydonal (2)
Rivas-Torres, Gonzal ... (2)
Farfan-Rios, William (2)
de Aguiar, Daniel P. ... (2)
Ahuite Reategui, Man ... (2)
Albuquerque, Bianca ... (2)
Alonso, Alfonso (2)
do Amaral, Dário Dan ... (2)
do Amaral, Iêda Leão (2)
Andrade, Ana (2)
de Andrade Miranda, ... (2)
Araujo-Murakami, Ale ... (2)
Arroyo, Luzmila (2)
Aymard C, Gerardo A. (2)
Baider, Cláudia (2)
Bánki, Olaf S. (2)
Baraloto, Chris (2)
Barbosa, Edelcilio M ... (2)
Barbosa, Flávia Rodr ... (2)
Brienen, Roel (2)
Camargo, José Luís (2)
Campelo, Wegliane (2)
Cano, Angela (2)
Cárdenas, Sasha (2)
Cárdenas López, Dair ... (2)
Carrero Márquez, Yrm ... (2)
Castellanos, Hernán (2)
Castilho, Carolina V ... (2)
Cerón, Carlos (2)
Chave, Jerome (2)
Comiskey, James A. (2)
Cornejo Valverde, Fe ... (2)
Correa, Diego F. (2)
visa färre...
Lärosäte
Stockholms universitet (13)
Göteborgs universitet (2)
Linköpings universitet (2)
Karolinska Institutet (2)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Samhällsvetenskap (13)
Medicin och hälsovetenskap (2)
Humaniora (2)
Naturvetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy