SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Waters M.) srt2:(2010-2014)"

Search: WFRF:(Waters M.) > (2010-2014)

  • Result 11-20 of 45
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Botticella, M. T., et al. (author)
  • Supernova 2009kf : An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 717, s. L52-L56
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s-1 at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 1015 cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M NUV = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey.
  •  
12.
  • Harwit, M., et al. (author)
  • Polarisation observations of VY Canis Majoris H2O 5(32)-4(41) 620.701 GHz maser emission with HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521, s. L51-
  • Journal article (peer-reviewed)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
13.
  • Blommaert, J. A. D. L., et al. (author)
  • Herschel/PACS observations of the 69 mu m band of crystalline olivine around evolved stars
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565, s. A109-
  • Journal article (peer-reviewed)abstract
    • Context. We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 mu m. This wavelength range covers the 69 mu m band of crystalline olivine (Mg-2 2xFe(2x)SiO4). The width and wavelength position of this band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, (M) over dot >= 10(-5) M-circle dot/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. Aims. The goal of this study is to exploit the spectral properties of the 69 mu m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. Methods. We fit the 69 mu m band and use its width and position to probe the composition and temperature of the crystalline olivine. Results. For 27 sources in the sample, we detected the 69 mu m band of crystalline olivine (Mg(2-2x)Fe(2x)SiO4). The 69 mu m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 mu m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 mu m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. The disk sources in our sample with crystalline olivine are very diverse. They show either no 69 mu m band, a moderately strong band, or a very strong band, together with a temperature for the crystalline olivine in their disk that is either very warm (similar to 600 K), moderately warm (similar to 200 K), or cold (similar to 120 K), respectively.
  •  
14.
  • Cernicharo, J., et al. (author)
  • A high-resolution line survey of IRC+10216 with Herschel/HIFI First results: Detection of warm silicon dicarbide (SiC2)
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L8-
  • Journal article (peer-reviewed)abstract
    • We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901 GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5 GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of similar to 2 x 10(-7) relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of similar to 204 K and a source-averaged column density of similar to 6.4 x 10(15) cm(-2). Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2.
  •  
15.
  • de Vries, B. L., et al. (author)
  • Comet-like mineralogy of olivine crystals in an extrasolar proto-Kuiper belt
  • 2012
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 490:7418, s. 74-76
  • Journal article (peer-reviewed)abstract
    • Some planetary systems harbour debris disks containing planetesimals such as asteroids and comets(1). Collisions between such bodies produce small dust particles(2), the spectral features of which reveal their composition and, hence, that of their parent bodies. A measurement of the composition of olivine crystals (Mg2-2xFe2xSiO4) has been done for the protoplanetary disk HD 100546 (refs 3, 4) and for olivine crystals in the warm inner parts of planetary systems. The latter compares well with the iron-rich olivine in asteroids(5,6) (x approximate to 0.29). In the cold outskirts of the beta Pictoris system, an analogue to the young Solar System, olivine crystals were detected(7) but their composition remained undetermined, leaving unknown how the composition of the bulk of Solar System cometary olivine grains compares with that of extrasolar comets(8,9). Here we report the detection of the 69-micrometre-wavelength band of olivine crystals in the spectrum of beta Pictoris. Because the disk is optically thin, we can associate the crystals with an extrasolar proto-Kuiper belt a distance of 15-45 astronomical units from the star (one astronomical unit is the Sun-Earth distance), determine their magnesium-rich composition (x = 0.01 +/- 0.001) and show that they make up 3.6 +/- 1.0 per cent of the total dust mass. These values are strikingly similar to those for the dust emitted by the most primitive comets in the Solar System(8-10), even though beta Pictoris is more massive and more luminous and has a different planetary system architecture.
  •  
16.
  • Harwit, M., et al. (author)
  • Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L51-
  • Journal article (peer-reviewed)abstract
    • Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims. We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods. In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s(-1), which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut fur Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results. We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings.
  •  
17.
  • Khouri, T., et al. (author)
  • The wind of W Hydrae as seen by Herschel I. The CO envelope
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 561, s. Article no. A5-
  • Journal article (peer-reviewed)abstract
    • Context. Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. Aims. We characterize the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments on board the Herschel Space Observatory and ground-based telescopes. (CO)-C-12 and (CO)-C-13 lines are used to constrain the intrinsic C-12/C-13 ratio from resolved HIFI lines. Methods. We combined a state-of-the-art molecular line emission code and a dust continuum radiative transfer code to model the CO lines and the thermal dust continuum. Results. The acceleration of the outflow up to about 5.5 km s(-1) is quite slow and can be represented by a beta-type velocity law with index beta = 5. Beyond this point, acceleration up the terminal velocity of 7 km s(-1) is faster. Using the J = 10-9, 9-8, and 6-5 transitions, we find an intrinsic C-12/C-13 ratio of 18 +/- 10 for W Hya, where the error bar is mostly due to uncertainties in the (CO)-C-12 abundance and the stellar flux around 4.6 mu m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at similar to 500 stellar radii. The radial dust emission intensity profile of our stellar wind model matches PACS images at 70 mu m out to 20 '' (or 800 stellar radii). For larger radii the observed emission is substantially stronger than our model predicts, indicating that at these locations there is extra material present. Conclusions. The initial slow acceleration of the wind may imply inefficient dust formation or dust driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M-circle dot or more. However, the uncertainty in the isotopologic ratio is large, which makes it difficult to set reliable limits on W Hya's main-sequence mass.
  •  
18.
  • Khouri, T., et al. (author)
  • The wind of W Hydrae as seen by Herschel II. The molecular envelope of W Hydrae
  • 2014
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 570, s. Art. no. A67-
  • Journal article (peer-reviewed)abstract
    • Context. The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB stars and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. Aims. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the (CO)-C-12 molecule. Here we broaden this study by including an extensive set of H2O and (SiO)-Si-28 lines. It is the first time such a comprehensive study is performed for this source. The oxygen isotopic ratios and the (SiO)-Si-28 abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. Methods. We model the molecular emission observed by the three instruments on board Herschel Space Observatory using a state-of-the-art molecular excitation and radiative transfer code. We also account for the dust radiation field in our calculations. Results. We find an H2O ortho-to-para ratio of 2.5(-1.0)(+2.5), consistent with what is expected for an AGB wind. The O-16/O-17 ratio indicates that W Hya has an initial mass of about 1.5 M-circle dot. Although the ortho-and para-H2O lines observed by HIFI appear to trace gas of slightly different physical properties, we find that a turbulence velocity of 0.7 +/- 0.1 km s(-1) fits the HIFI lines of both spin isomers and those of (SiO)-Si-28 well. Conclusions. The modelling of H2O and (SiO)-Si-28 confirms the properties of the envelope model of W Hya, as derived from (CO)-C-12 lines, and allows us to constrain the turbulence velocity. The ortho-and para-(H2O)-O-16 and (SiO)-Si-28 abundances relative to H-2 are (6(2)(+3)) x 10(-4), (3(-1)(+2)) x 10(-4), and (3.3 +/- 0.8) x 10(-5), respectively, in agreement with expectations for oxygen-rich AGB outflows. Assuming a solar silicon-to-carbon ratio, the (SiO)-Si-28 line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
  •  
19.
  • Pastorello, A., et al. (author)
  • Ultra-bright Optical Transients are Linked with Type Ic Supernovae
  • 2010
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 724, s. L16-L21
  • Journal article (peer-reviewed)abstract
    • Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes ~-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by 56Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.
  •  
20.
  • Bujarrabal, V., et al. (author)
  • Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 521:1, s. Article Number: L3-
  • Journal article (peer-reviewed)abstract
    • Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas components in the protoplanetary nebula CRL 618. These components are particularly important for understanding the evolution of the nebula. Methods. We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL 618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines. Results. The (CO)-C-12 J = 16-15, 10-9, and 6-5 lines are easily detected in this source. Both (CO)-C-13 J = 10-9 and 6-5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in (CO)-C-12 J = 16-15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km s(-1) must have a temperature higher than similar to 200 K. Probably, this very fast outflow, with a kinematic age
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view