SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wenzel H.) "

Sökning: WFRF:(Wenzel H.)

  • Resultat 11-20 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  •  
12.
  • Rickman, Hans, et al. (författare)
  • Comet 67P/Churyumov-Gerasimenko : Constraints on its origin from OSIRIS observations
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. Aims. In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation to that of comets in general and in the framework of current solar system formation models. Methods. We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. Results. We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. Conclusions. A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.
  •  
13.
  • Fulle, M., et al. (författare)
  • Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 583
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. During September and October 2014, the OSIRIS cameras onboard the ESA Rosetta mission detected millions of single particles. Many of these dust particles appear as long tracks (due to both the dust proper motion and the spacecraft motion during the exposure time) with a clear brightness periodicity. Aims. We interpret the observed periodic features as a rotational and translational motion of aspherical dust grains. Methods. By counting the peaks of each track, we obtained statistics of a rotation frequency. We compared these results with the rotational frequency predicted by a model of aspherical dust grain dynamics in a model gas flow. By testing many possible sets of physical conditions and grain characteristics, we constrained the rotational properties of dust grains. Results. We analyzed on the motion of rotating aspherical dust grains with different cross sections in flow conditions corresponding to the coma of 67P/Churyumov-Gerasimenko qualitatively and quantitatively. Based on the OSIRIS observations, we constrain the possible physical parameters of the grains.
  •  
14.
  • Jorda, L., et al. (författare)
  • The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations
  • 2016
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 277, s. 257-278
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rosetta spacecraft reached Comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) in August 2014 at an heliocentric distance of 3.6 a.u. and was then put in orbit around its nucleus to perform detailed observations. Among the collected data are the images acquired by the OSIRIS instrument up to the perihelion passage of the comet in August 2015, which allowed us to map the entire nucleus surface at high-resolution in the visible. Stereophotoclinometry methods have been used to reconstruct a global high-resolution shape model and to monitor its rotational parameters using data collected up to perihelion. The nucleus has a conspicuous bilobate shape with overall dimensions along its principal axes of (4.34 +/- 0.02) x (2.60 +/- 0.02) x (2.12 +/- 0.06) km. The best-fit ellipsoid dimensions of the individual lobes along their principal axes of inertia are found to be 4.10 x 3.52 x 1.63 km and 2.50 x 2.14 x 1.641cm. Their volume amounts to 66% and 27% of the total volume of the nucleus. The two lobes are connected by a "neck" whose volume has been estimated to represent similar to 7% of the total volume of the comet. Combining the derived volume of 18.8 +/- 0.3 km(3) with the mass of 9.982 +/- 0.003 x 10(12) kg determined by the Rosetta/RSI experiment, we obtained a bulk density of the nucleus of 532 +/- 7 kg m(-3). Together with the companion value of 535 35 kg m-3 deduced from the stereophotogrammetry shape model of the nucleus (Preusker et al. [2015] Astron. Astrophys. 583, A33), these constitute the first reliable and most accurate determination of the density of a cometary nucleus to date. The calculated porosity is quite large, ranging approximately from 70% to 75% depending upon the assumed density of the dust grains and the dust-to-ice mass ratio. The nature of the porosity, either micro or macro or both, remains unconstrained. The coordinates of the center of gravity are not compatible with a uniform nucleus density. The direction of the offset between the center of gravity and the center of figure suggests that the big lobe has a slightly higher bulk density compared to the small one. the center of mass position cannot be explained by different, but homogenous densities in the two lobes. The initial rotational period of 12.4041 +/- 0.0001 h of the nucleus persisted until October 2014. It then slightly increased to a maximum of 12.4304h reached on 19 May 2015 and finally dropped to 12.305 h just before perihelion on August 10, 2015. A periodogram analysis of the (RA, Dec) direction of the Z-axis of the comet obtained in parallel with the shape reconstruction exhibits a highly significant minima at 11.5 +/- 0.5 day clearly indicating an excited rotational state with an amplitude of 0.15 +/- 0.03 degrees.
  •  
15.
  • Mottola, S., et al. (författare)
  • The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 569, s. L2-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P's nucleus. Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P-1 = 12.76129 +/- 0.00005 h and P2 = 12.4043 +/- 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates lambda = 65 degrees +/- 15 degrees, beta = + 59 degrees +/- 15 degrees, corresponding to equatorial coordinates RA = 22 degrees, Dec = +76 degrees. However, we find that the mirror solution, also prograde, at lambda = 275 degrees +/- 15 degrees, beta = + 50 degrees +/- 15 degrees (or RA = 274 degrees, Dec = +27 degrees), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.
  •  
16.
  •  
17.
  • Sierks, H., et al. (författare)
  • Images of Asteroid 21 Lutetia : A Remnant Planetesimal from the Early Solar System
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6055, s. 487-490
  • Tidskriftsartikel (refereegranskat)abstract
    • Images obtained by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras onboard the Rosetta spacecraft reveal that asteroid 21 Lutetia has a complex geology and one of the highest asteroid densities measured so far, 3.4 +/- 0.3 grams per cubic centimeter. The north pole region is covered by a thick layer of regolith, which is seen to flow in major landslides associated with albedo variation. Its geologically complex surface, ancient surface age, and high density suggest that Lutetia is most likely a primordial planetesimal. This contrasts with smaller asteroids visited by previous spacecraft, which are probably shattered bodies, fragments of larger parents, or reaccumulated rubble piles.
  •  
18.
  • Tubiana, C., et al. (författare)
  • 67P/Churyumov-Gerasimenko : Activity between March and June 2014 as observed from Rosetta/OSIRIS
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. 67P/Churyumov-Gerasimenko is the target comet of the ESA's Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods. We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P - Rosetta distance decreased from 5 million to 120 thousand km. Results. Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet's brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.
  •  
19.
  •  
20.
  • Baumeister, Hannah, et al. (författare)
  • A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
  • Ingår i: Brain : a journal of neurology. - 1460-2156. ; 147:7, s. 2400-2413
  • Tidskriftsartikel (refereegranskat)abstract
    • Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-20 av 48
Typ av publikation
tidskriftsartikel (39)
konferensbidrag (7)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (41)
övrigt vetenskapligt/konstnärligt (6)
populärvet., debatt m.m. (1)
Författare/redaktör
Thomas, N (13)
Barbieri, C. (13)
Rodrigo, R. (13)
Cremonese, G. (13)
Sierks, H. (12)
Koschny, D. (12)
visa fler...
Rickman, Hans (12)
Fornasier, S. (12)
Fulle, M. (12)
Groussin, O. (12)
Jorda, L. (12)
Keller, H. U. (12)
Kuehrt, E. (12)
Kueppers, M. (12)
Marzari, F. (12)
Wenzel, K. -P (12)
Vincent, J. -B (11)
Barucci, M. A. (11)
Da Deppo, V. (11)
Debei, S. (11)
De Cecco, M. (11)
Knollenberg, J. (11)
Lazzarin, M. (11)
Naletto, G. (11)
A'Hearn, M. F. (10)
Bertaux, J. -L (10)
Bertini, I. (10)
Hviid, S. F. (10)
Tubiana, C. (9)
Lopez Moreno, J. J. (9)
Davidsson, Björn (9)
Michalik, H. (9)
Sabau, L. (9)
Guettler, C. (8)
Lamy, P. (8)
Oklay, N. (7)
Marchi, S. (7)
Gutierrez, P. (6)
Ip, W. -H (6)
Kramm, J. -R (6)
Lara, L. M. (6)
Mottola, S. (6)
Agarwal, J. (6)
Angrilli, F. (6)
Lamy, P. L. (5)
Gutierrez, P. J. (5)
Massironi, M. (5)
Ip, W. (5)
Lara, L. (5)
Kramm, R. (5)
visa färre...
Lärosäte
Uppsala universitet (20)
Karolinska Institutet (16)
Kungliga Tekniska Högskolan (5)
Lunds universitet (5)
Göteborgs universitet (4)
Chalmers tekniska högskola (3)
visa fler...
Umeå universitet (2)
Stockholms universitet (2)
Malmö universitet (2)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (47)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (20)
Medicin och hälsovetenskap (10)
Teknik (4)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy