SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Xian) srt2:(2020-2024)"

Sökning: WFRF:(Zhao Xian) > (2020-2024)

  • Resultat 11-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
11.
  • Qin, Shuang-Jian, et al. (författare)
  • Neurotoxicity of fine and ultrafine particulate matter : a comprehensive review using a toxicity pathway-oriented adverse outcome pathway framework
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 947
  • Forskningsöversikt (refereegranskat)abstract
    • Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.
  •  
12.
  • Wang, Shanlin, et al. (författare)
  • Design of Continuous Transport of the Droplet by the Contact-Boiling Regime
  • 2021
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 37:1, s. 553-560
  • Tidskriftsartikel (refereegranskat)abstract
    • Joule-heat-driven directional transport of liquid droplets has comprehensive engineering applications in various water and thermal management, cooling systems, and self-cleaning. Generally, the driving force for the transport of liquid droplets was always observed at an extremely high Leidenfrost temperature, which limits the potential application between liquid boiling and Leidenfrost points. In this work, we design a new strategy to directionally drive the transport of droplets by blockading the vapor cushion at a temperature much lower than the Leidenfrost point. On the surface of the microhole arrays, we observed the continuous rebound behavior of ethanol droplets at T-s = 110 degrees C. Employing the thermal multiphase lattice Boltzmann model, the continuous rebound behavior was reproduced, verifying that the driving force was provided by the blockaded vapor pressure in microholes. By cooperating with the Laplace pressure difference, we directionally transport ethanol and water droplets on the horizontal asymmetrical concentric microridge surface. The horizontal velocity of water is 11.25 cm/s at T-s = 180 degrees C, similar to the traditional ratchets at the Leidenfrost point. The design of microtextures enriches the fundamental understanding of how to drive droplets at far below the Leidenfrost point and pushes the application in nongravity-driven self-cleaning and cooling systems.
  •  
13.
  • Wu, Qi-Zhen, et al. (författare)
  • Long-term exposure to major constituents of fine particulate matter and neurodegenerative diseases : a population-based survey in the Pearl River Delta Region, China
  • 2024
  • Ingår i: Journal of Hazardous Materials. - : Elsevier. - 0304-3894 .- 1873-3336. ; 470
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions.Objectives: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases.Methods: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence.Results: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45–2.27; 1.78; 95% CI, 1.37–2.32; and 1.99; 95% CI, 1.54–2.57 for the second, third, and fourth quartiles, respectively).Conclusions: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals.Environmental implication: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.
  •  
14.
  • Xu, Jie, et al. (författare)
  • UV-B-induced molecular mechanisms of stress physiology responses in the major northern Chinese conifer Pinus tabuliformis Carr
  • 2021
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 41:7, s. 1247-1263
  • Tidskriftsartikel (refereegranskat)abstract
    • During their lifetimes, plants are exposed to different abiotic stress factors eliciting various physiological responses and triggering important defense processes. For UV-B radiation responses in forest trees, the genetics and molecular regulation remain to be elucidated. Here, we exposed Pinus tabuliformis Carr., a major conifer from northern China, to short-term high-intensity UV-B and employed a systems biology approach to characterize the early physiological processes and the hierarchical gene regulation, which revealed a temporal transition from primary to secondary metabolism, the buildup of enhanced antioxidant capacity and stress-signaling activation. Our findings showed that photosynthesis and biosynthesis of photosynthetic pigments were inhibited, while flavonoids and their related derivates biosynthesis, as well as glutathione and glutathione S-transferase mediated antioxidant processes, were enhanced. Likewise, stress-related phytohormones (jasmonic acid, salicylic acid and ethylene), kinase and reactive oxygen species signal transduction pathways were activated. Biological processes regulated by auxin and karrikin were, for the first time, found to be involved in plant defense against UV-B by promoting the biosynthesis of flavonoids and the improvement of antioxidant capacity in our research system. Our work evaluated the physiological and transcriptome perturbations in a conifer's response to UV-B, and generally, highlighted the necessity of a systems biology approach in addressing plant stress biology.
  •  
15.
  • Zhao, Ming, et al. (författare)
  • A hierarchical reconstruction for DG/FV method with low dispersion: Basic formulation and applications
  • 2021
  • Ingår i: Computers and Fluids. - : Elsevier BV. - 0045-7930. ; 231
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, the numerical dispersion of a hierarchical reconstruction strategy for DG/FV method has been optimized. For the hierarchical strategy, the cell averages and the first derivatives are reconstructed based on the Hermite WENO method; the second derivatives are reconstructed via Green-Gauss integration and WENO reconstruction. Then, the numerical dispersion has been optimized by minimizing error with bandwidth optimization technique. Furthermore, to adjust the loss of compactness due to the reconstructed second derivatives, two modifications were also proposed with optimal weights. Eventually, from the implementations in scalar and compressible Euler equations, the superiority of numerical dispersion and accuracy of present methods could be validated. The shock capturing capacity has also been validated in 1D and 2D cases.
  •  
16.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 11-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy