SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(de Wit Cynthia A.) srt2:(2015-2019)"

Search: WFRF:(de Wit Cynthia A.) > (2015-2019)

  • Result 11-20 of 39
Sort/group result
   
EnumerationReferenceCoverFind
11.
  • Christia, Christina, et al. (author)
  • Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption
  • 2019
  • In: Environmental Research. - : Academic Press. - 0013-9351 .- 1096-0953. ; 171, s. 204-212
  • Journal article (peer-reviewed)abstract
    • Plasticizers are a category of chemicals extensively used in consumer products and, consequently, their presence is ubiquitous in the indoor environment. In the present study, an analytical method has been developed for the quantification of plasticizers (7 legacy phthalate esters (LPEs) and 14 alternative plasticizers (APs)) in indoor floor dust based on ultrasonic and vortex extraction, Florisil fractionation and GC-(EI)-MS analysis. Dust samples (n = 54) were collected from homes, offices, and daycare centers from different EU countries (Belgium, the Netherlands, Ireland and Sweden). Method LOQs ranged from 0.2 to 5 mu g/g. Tri-n-hexyl trimellitate (THTM) was not detected in any sample, whereas dimethyl phthalate (DMP), diphenyl phthalate and acetyl triethyl citrate (ATEC) were detected only in 6, 2 and 1 out of 54 samples, respectively. The highest concentrations of plasticizers were measured in Swedish offices, at a mean concentration of total plasticizers of 1800 mu g/g, followed by Swedish daycare centers at 1200 and 670 mu g/g for winter and spring sampling, respectively. Generally, the contribution of APs was slightly higher than for LPEs for all indoor environments (mean contribution 60% and 40%, respectively based on contributions per indoor environment). For the APs, main contributors were DINP in Belgian homes (28%), Swedish offices (60%), Swedish daycare centers (48%), and Dutch offices (31%) and DEHT in Belgian (28%), Irish (40%) and Dutch homes (37%) of total APs. The predominant LPE was bis-2-ethylhexyl-phthalate (DEHP) with a mean contribution varying from 60% to 85% of total LPEs. Human exposure was evaluated for dust ingestion and dermal absorption using hazard quotients (HQs) of plasticizers (ratio between average daily doses and the reference dose). None of the HQs of plasticizers exceeded 1, meaning that the risk for adverse human health effects from these plasticizers via dust ingestion and dermal absorption is unlikely.
  •  
12.
  • de Wit, Cynthia A., 1956- (author)
  • Acknowledgement
  • 2019
  • In: Emerging Contaminants. - : Elsevier BV. - 2405-6650 .- 2405-6642. ; 5, s. 35-35
  • Journal article (peer-reviewed)
  •  
13.
  •  
14.
  • de Wit, Cynthia A., et al. (author)
  • Mass balance study of brominated flame retardants in female captive peregrine falcons
  • 2019
  • In: Environmental Science-Processes & Impacts. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 21:7, s. 1115-1131
  • Journal article (peer-reviewed)abstract
    • Little is known about brominated flame retardant (BFR) dynamics in birds, especially large molecules such as decabromodiphenyl ether (BDE-209). In particular, bioaccumulation from food and transfer dynamics to eggs are poorly understood. Therefore, an input-output mass balance study of tri-decaBDEs, DBDPE and HBCDD was performed in three female peregrine falcons from a captive breeding program by analyzing their naturally contaminated food (quail, chicken (cockerels)), plasma, feces and eggs. Predominant BFRs in cockerels and quail were BDE-209 and DBDPE, as well as HBCDD in quail. The predominant BFRs found in falcon plasma were BDE-209, -153 and -183, in eggs, HBCDD, BDE-209 and -153 and in feces, BDE-209. Mean absorption efficiencies (AE) for the tetra-octabrominated BDEs ranged from 84-100% and 70% for HBCDD. The AEs for BDE-206, -207, -208 and -209 varied due to the large variability seen for feces fluxes. All egg/plasma ratios for BDEs were similar and greater than one (range 1.1-2.7), including for BDE-209, indicating efficient transfer from females to the eggs. Excretion via egg-laying was approximately 6.0-29% of the initial, pre-breeding body burden of individual penta-decaBDE congeners, (15-45% for BDE-206). HBCDD was not detected in plasma but was found in eggs, also indicating efficient transfer and excretion via eggs. Input fluxes from food exceeded the output fluxes (feces, eggs) indicating considerable metabolism for tetra-octaBDEs, possibly also for the nona-decaBDEs and HBCDD. Bioaccumulation factors calculated from lipid weight concentrations in plasma and food (BAF(p)) were highest for BDE-208 (31), -153 (23), -209 (19) and -207 (16) and from eggs and food (BAF(e)), were highest for HBCDD (140), BDE-153 (41), -208 (42), BDE-207 (24) and BDE-209 (21). BAF(e) and BAF(p) values were below 10 for BDE-47, -99 and -100. For one falcon, egg results were available from three different years and estimated half-lives were 65 d (BDE-99), 624 d (BDE-153), 31 d (BDE-154), 349 d (BDE-183), 77 d (BDE-196) and 89 d (BDE-197).
  •  
15.
  • Diamond, Miriam, et al. (author)
  • Exploring the planetary boundary for chemical pollution
  • 2015
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 78, s. 8-15
  • Research review (peer-reviewed)abstract
    • Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if “unacceptable global change” is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies.
  •  
16.
  • Drage, Daniel S., et al. (author)
  • Concentrations of legacy and emerging flame retardants in air and soil on a rural-urban transect in the UK West Midlands
  • 2016
  • In: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 148, s. 195-203
  • Journal article (peer-reviewed)abstract
    • Passive air samples were collected monthly for 6 months from 8 sites along a transect of Birmingham, United Kingdom between June 2012 and January 2013. Soil samples were collected once at each site. Average concentrations of BDE-209, ΣPBDEs17:183 and ΣPBDEs in ambient air were 150, 49, and 180 pg m−3, respectively. Atmospheric concentrations of PBDEs were negatively correlated with distance from the city centre, exhibiting an “urban pulse”. The average ΣHBCDD air concentration was 100 pg m−3, however concentrations were not correlated with distance from the city centre. Several emerging flame retardants (EFRs) were identified in air and/or soil samples: 2,3,4,5-tetrabromo-bis(2-ethylhexyl) phthalate (BEH-TEBP), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH or DBE-DBCH), allyl 2,4,6-tribromophenyl ether (ATE), 2-bromoallyl 2,4,6-tribromophenyl ether (BATE), decabromodiphenyl ethane (DBDPE), and dechlorane plus (DP or DDC-CO). Average concentrations of BDE-209, ΣPBDEs17:183 and ΣPBDEs in soil were 11, 3.6, and 15 ng g−1 soil organic matter. PBDE concentrations in soil were higher at sites closest to the city centre, however correlations with distance from the city centre were not significant. BDEs-47 and -99 contributed more to ΣPBDEs in soil samples than air samples, but in both, the predominant congener was BDE-209. BATE was more abundant in air than soil but ATE was abundant in soil but not air.
  •  
17.
  • Giovanoulis, Georgios, 1982- (author)
  • What contributes to human body burdens of phthalate esters? : An experimental approach
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Phthalate esters (PEs) and alternative plasticizers used as additives in numerous consumer products are continuously released into the environment leading to subsequent human exposure. The ubiquitous presence and potential adverse health effects (e.g. endocrine disruption and reproductive toxicity) of some PEs are responsible for their bans or restrictions. This has led to increasing use of alternative plasticizers, especially cyclohexane-1,2-dicarboxylic acid diisononyl ester (DINCH). Human exposure data on alternative plasticizers are lacking and clear evidence for human exposure has previously only been found for di(2-ethylhexyl) terephthalate (DEHTP) and DINCH, with increasing trends in body burdens. In this thesis, a study population of 61 adults (age: 20–66; gender: 16 males and 45 females) living in the Oslo area (Norway) was studied for their exposure to plasticizers. Information on sociodemographic and lifestyle characteristics that potentially affect the concentrations of PE and DINCH metabolites in adults was collected by questionnaires. Using the human biomonitoring approach, we evaluated the internal exposure to PEs and DINCH by measuring concentrations of their metabolites in urine (where metabolism and excretion are well understood) and using these data to back-calculate daily intakes. Metabolite levels in finger nails were also determined. Since reference standards of human metabolites for other important alternative plasticizers apart from DINCH (e.g. DEHTP, di(2-propylheptyl) phthalate (DPHP), di(2-ethylhexyl) adipate (DEHA) and acetyl tributyl citrate (ATBC)) are not commercially available, we further investigated the urine and finger nail samples by Q Exactive Orbitrap LC-MS to identify specific metabolites, which can be used as appropriate biomarkers of human exposure. Many metabolites of alternative plasticizers that were present in in vitro extracts were further identified in vivo in urine and finger nail samples. Hence, we concluded that in vitro assays can reliably mimic the in vivo processes. Also, finger nails may be a useful non-invasive matrix for human biomonitoring of specific organic contaminants, but further validation is needed. Concentrations of PEs and DINCH were also measured in duplicate diet, air, dust and hand wipes. External exposure, estimated based on dietary intake, air inhalation, dust ingestion and dermal uptake, was higher or equal to the back-calculated internal intake. By comparing these, we were able to explain the relative importance of different exposure pathways for the Norwegian study population. Dietary intake was the predominant exposure route for all analyzed substances. Inhalation was important only for lower molecular weight PEs, while dust ingestion was important for higher molecular weight PEs and DINCH. Dermal uptake based on hand wipes was much lower than the total dermal uptake calculated via air, dust and personal care products, but still several research gaps remain for this exposure pathway. Based on calculated intakes, the exposure risk for the Norwegian participants to the PEs and DINCH did not exceed the established tolerable daily intake and reference doses, and the cumulative risk assessment for combined exposure to plasticizers with similar toxic endpoints indicated no health concerns for the selected population. Nevertheless, exposure to alternative plasticizers, such as DPHP and DINCH, is expected to increase in the future and continuous monitoring is required. Findings through uni- and multivariate analysis suggested that age, smoking, use of personal care products and many other everyday habits, such as washing hands or eating food from plastic packages are possible contributors to plasticizer exposure.
  •  
18.
  • Kademoglou, Katerina, et al. (author)
  • In Vitro Inhalation Bioaccessibility of Phthalate Esters and Alternative Plasticizers Present in Indoor Dust Using Artificial Lung Fluids
  • 2018
  • In: Environmental Science and Technology Letters. - : American Chemical Society (ACS). - 2328-8930. ; 5:6, s. 329-334
  • Journal article (peer-reviewed)abstract
    • Phthalate esters (PEs) are used as plasticizers in consumer products. Their low migration stability has resulted in the classification of PEs as major indoor contaminants. Because of PE's ubiquity and adverse health effects on humans and especially children, non-phthalate alternative plasticizers have been introduced into the market. This is the first study of in vitro inhalation bioaccessibility of PEs (e.g., DMP, DEP, and DEHP) and alternative plasticizers (e.g., DEHT and DINCH) via indoor dust to assess inhalation as an alternative route of exposure. Two artificial lung fluids were used, mimicking two distinctively different pulmonary environments: (1) artificial lysosomal fluid (ALF, pH 4.5) representing the intracellular acidic lung fluid inhaled particle contact after phagocytosis by alveolar macrophages and (2) Gamble's solution (pH 7.4), the extracellular healthy fluid for deep lung deposition of dust. DMP and DEP were highly bioaccessible (>75%), whereas highly hydrophobic compounds such as DEHP, DINCH, and DEHT were <5% bioaccessible via both artificial lung fluids. Our findings show that the inhalation bioaccessibility of PEs is primarily governed by their hydrophobicity and water solubility. Further research is necessary to develop unified and biologically relevant inhalation bioaccessibility tests, employed as part of human risk assessment of volatile and semivolatile organic pollutants.
  •  
19.
  • Land, Magnus, et al. (author)
  • What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review
  • 2018
  • In: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 7:1
  • Research review (peer-reviewed)abstract
    • Background: There is a concern that continued emissions of man-made per-and polyfluoroalkyl substances (PFASs) may cause environmental and human health effects. Now widespread in human populations and in the environment, several PFASs are also present in remote regions of the world, but the environmental transport and fate of PFASs are not well understood. Phasing out the manufacture of some types of PFASs started in 2000 and further regulatory and voluntary actions have followed. The objective of this review is to understand the effects of these actions on global scale PFAS concentrations. Methods: Searches for primary research studies reporting on temporal variations of PFAS concentrations were performed in bibliographic databases, on the internet, through stakeholder contacts and in review bibliographies. No time, document type, language or geographical constraints were applied in the searches. Relevant subjects included human and environmental samples. Two authors screened all retrieved articles. Dual screening of 10% of the articles was performed at title/abstract and full-text levels by all authors. Kappa tests were used to test consistency. Relevant articles were critically appraised by four reviewers, with double checking of 20% of the articles by a second reviewer. Meta-analysis of included temporal trends was considered but judged to not be appropriate. The trends were therefore discussed in a narrative synthesis. Results: Available evidence suggests that human concentrations of perfluorooctane sulfonate (PFOS), perfluorodecane sulfonate (PFDS), and perfluorooctanoic acid (PFOA) generally are declining, while previously increasing concentrations of perfluorohexane sulfonate (PFHxS) have begun to level off. Rapid declines for PFOS-precursors (e.g. perfluorooctane sulfonamide, FOSA) have also been consistently observed in human studies. In contrast, limited data indicate that human concentrations of PFOS and PFOA are increasing in China where the production of these substances has increased. Human concentrations of longer-chained perfluoroalkyl carboxylic acids (PFCAs) with 9-14 carbon atoms are generally increasing or show insignificant trends with too low power to detect a trend. For abiotic and biological environmental samples there are no clear patterns of declining trends. Most substances show mixed results, and a majority of the trends are insignificant with low power to detect a trend. Conclusions: For electrochemically derived PFASs, including PFOS and PFOA, most human studies in North America and Europe show consistent statistically significant declines. This contrasts with findings in wildlife and in abiotic environmental samples, suggesting that declining PFOS, PFOS-precursor and PFOA concentrations in humans likely resulted from removal of certain PFASs from commercial products including paper and board used in food packaging. Increasing concentrations of long-chain PFCAs in most matrices, and in most regions, is likely due to increased use of alternative PFASs. Continued temporal trend monitoring in the environment with well-designed studies with high statistical power are necessary to evaluate the effectiveness of past and continuing regulatory mitigation measures. For humans, more temporal trend studies are needed in regions where manufacturing is most intense, as the one human study available in China is much different than in North America or Europe.
  •  
20.
  • Land, Magnus, et al. (author)
  • What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review protocol
  • 2015
  • In: Environmental Evidence. - : Springer Science and Business Media LLC. - 2047-2382. ; 4:1
  • Research review (peer-reviewed)abstract
    • BackgroundThere is a growing concern in Sweden and elsewhere that continued emissions of per- and polyfluoroalkyl substances (PFASs) may cause environmental as well as human health effects. PFASs are a broad class of man-made substances that have been produced and used in both commercial products and industrial processes for more than 60 years. Although the production and use of some PFASs has been phased-out in some parts of the world, it is not known what effect these actions to date have had on PFAS concentrations in the environment. Owing to the wide diversity of PFASs, it is difficult to generalize their properties, environmental fate and production histories. However, the strength and stability of the C-F bond renders the perfluoroalkyl moieties resistant to heat and environmental degradation. Several PFASs are now occurring even in very remote areas in large parts of the world, but the environmental transport and fate of substances within this group is not well understood. A systematic review may be able to determine whether the concentrations of these substances in different environments are changing in any particular direction with time, and whether the phase-outs have had any effects on the concentration trends.MethodsSearches for primary research studies reporting on temporal variations of PFAS concentrations in the environment will be performed in the scientific literature as well as in other reports. Relevant samples include both abiotic and biological samples including humans. No particular time, document type, language or geographical constraints will be applied. Two authors will screen all retrieved articles. Double screening of about 10% of the articles will be performed by all authors at both title/abstract and full-text levels. Kappa tests will be used to test if the screening is consistent. Relevant articles will be critically appraised by four authors (double checking of 25% of the articles). Quality assessment will focus on selection bias, dating of samples, sample integrity and analytical procedures. Data synthesis will be based on statistical analysis of temporal concentration trends.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 11-20 of 39
Type of publication
journal article (35)
research review (3)
doctoral thesis (1)
Type of content
peer-reviewed (38)
other academic/artistic (1)
Author/Editor
Peeters, Petra H (3)
Overvad, Kim (3)
Kaaks, Rudolf (3)
Boeing, Heiner (3)
Trichopoulou, Antoni ... (3)
Norat, Teresa (3)
show more...
Riboli, Elio (3)
Diaz, Alejandro (3)
Joffres, Michel (3)
McKee, Martin (3)
Salomaa, Veikko (3)
Lundqvist, Annamari (3)
Giwercman, Aleksande ... (3)
Wade, Alisha N. (3)
Cooper, Cyrus (3)
Hardy, Rebecca (3)
Sunyer, Jordi (3)
Brenner, Hermann (3)
Claessens, Frank (3)
Craig, Cora L. (3)
Sjostrom, Michael (3)
Adams, Robert (3)
Thijs, Lutgarde (3)
Staessen, Jan A (3)
Schutte, Aletta E. (3)
Farzadfar, Farshad (3)
Geleijnse, Johanna M ... (3)
Guessous, Idris (3)
Jonas, Jost B. (3)
Kasaeian, Amir (3)
Khader, Yousef Saleh (3)
Khang, Young-Ho (3)
Lotufo, Paulo A. (3)
Malekzadeh, Reza (3)
Mensink, Gert B. M. (3)
Mohan, Viswanathan (3)
Nagel, Gabriele (3)
Qorbani, Mostafa (3)
Rivera, Juan A. (3)
Sepanlou, Sadaf G. (3)
Szponar, Lucjan (3)
Alkerwi, Ala'a (3)
Bjertness, Espen (3)
Kengne, Andre P. (3)
McGarvey, Stephen T. (3)
Shiri, Rahman (3)
Topor-Madry, Roman (3)
Branca, Francesco (3)
Damasceno, Albertino (3)
Michaelsen, Kim F (3)
show less...
University
Stockholm University (34)
University of Gothenburg (4)
Lund University (4)
Karolinska Institutet (4)
Umeå University (3)
Linköping University (3)
show more...
Uppsala University (2)
Luleå University of Technology (2)
IVL Swedish Environmental Research Institute (2)
Royal Institute of Technology (1)
Örebro University (1)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
show less...
Language
English (39)
Research subject (UKÄ/SCB)
Natural sciences (35)
Medical and Health Sciences (6)
Engineering and Technology (4)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view