SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matic Aleksandar 1968) "

Sökning: WFRF:(Matic Aleksandar 1968)

  • Resultat 41-50 av 172
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
41.
  • Haridas, Anupriya K., et al. (författare)
  • A flexible and free-standing FeS/sulfurized polyacrylonitrile hybrid anode material for high-rate sodium-ion storage
  • 2020
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947. ; 385:1 April
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium-ion based energy storage systems have attracted extensive attention due to the similarities in the mechanism of operation with lithium-ion batteries along with the additional benefit of low cost and high abundance of sodium resources. Iron sulfide-based electrodes that operate via conversion mechanism have shown ample potential for high energy sodium-ion storage. However, the problems related with tremendous volume changes and the dissolution of sodium polysulfides in the electrolyte deteriorate the cycle life and limit their application in sodium-ion batteries (SIBs). Herein, a hybrid anode material, FeS/SPAN-HNF, with iron sulfide (FeS) nanoparticles decorated in a sulfurized polyacrylonitrile (SPAN) fiber matrix is demonstrated as flexible and free-standing anode material for high-rate SIBs. Unlike previous strategies in which FeS is encapsulated in an electrochemically inactive carbon matrix, this study utilizes SPAN, an electrochemically active material, as a dual functional matrix that can efficiently buffer volume expansion and sulfur dissolution of FeS nanoparticles as well as provide significant capacity improvement. The as-designed electrode is self-standing and flexible, without current collectors, binders or additional conductive agents, thus rendering enhanced practical capacity and energy density. This electrode showed a high reversible capacity of 782.8 mAh g−1 at 200 mA g−1 with excellent high rate capability, maintaining 327.5 mAh g−1 after 500 cycles at 5 A g−1, emphasizing promising prospects for the development of flexible and high energy density SIBs.
  •  
42.
  • Haridas, Anupriya K., et al. (författare)
  • An Electrospun Core–Shell Nanofiber Web as a High-Performance Cathode for Iron Disulfide-Based Rechargeable Lithium Batteries
  • 2018
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 11:20, s. 3625-3630
  • Tidskriftsartikel (refereegranskat)abstract
    • FeS2/C core–shell nanofiber webs were synthesized for the first time by a unique synthesis strategy that couples electrospinning and carbon coating of the nanofibers with sucrose. The design of the one-dimensional core–shell morphology was found to be greatly beneficial for accommodating the volume changes encountered during cycling, to induce shorter lithium ion diffusion pathways in the electrode, and to prevent sulfur dissolution during cycling. A high discharge capacity of 545 mAh g−1 was retained after 500 cycles at 1 C, exhibiting excellent stable cycling performance with 98.8 % capacity retention at the last cycle. High specific capacities of 854 mAh g−1, 518 mAh g−1, and 208 mAh g−1 were obtained at 0.1 C, 1 C, and 10 C rates, respectively, demonstrating the exceptional rate capability of this nanofiber web cathode.
  •  
43.
  • Haridas, Anupriya K., et al. (författare)
  • Boosting High Energy Density Lithium-Ion Storage via the Rational Design of an FeS-Incorporated Sulfurized Polyacrylonitrile Fiber Hybrid Cathode
  • 2019
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 11:33, s. 29924-29933
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to satisfy the escalating energy demands, it is inevitable to improve the energy density of current Li-ion batteries. As the development of high-capacity cathode materials is of paramount significance compared to anode materials, here we have designed for the first time a unique synergistic hybrid cathode material with enhanced specific capacity, incorporating cost-effective iron sulfide (FeS) nanoparticles in a sulfurized polyacrylonitrile (SPAN) nanofiber matrix through a rational in situ synthesis strategy. Previous reports on FeS cathodes are scarce and consist of an amorphous carbon matrix to accommodate the volume changes encountered during the cycling process. However, this inactive buffering matrix eventually increases the weight of the cell, reducing the overall energy density. By the rational design of this hybrid composite cathode, we ensure that the presence of covalently bonded sulfur in SPAN guarantees high sulfur utilization, while effectively buffering the volume changes in FeS. Meanwhile, FeS can compensate for the conductivity issues in the SPAN, thereby realizing a synergistically driven dual-active cathode material improving the overall energy density of the composite. Simultaneous in situ generation of FeS nanoparticles within the SPAN fiber matrix was carried out via electrospinning followed by a one-step heating procedure. The developed hybrid cathode material displays enhanced lithium-ion storage, retaining 688.6 mA h g(FeS@SPAN composite)-1 at the end of 500 cycles at 1 A g-1 even within a narrow voltage range of 1-3.0 V. A high discharge energy density > 900 W h kg(FeS@SPAN composite)-1, much higher than the theoretical energy density of the commercial LiCoO2 cathode, was also achieved, revealing the promising prospects of this hybrid cathode material for high energy density applications.
  •  
44.
  •  
45.
  •  
46.
  • Iselau, Frida, 1979, et al. (författare)
  • Competitive adsorption of amylopectin and amylose on cationic nanoparticles: a study on the aggregation mechanism
  • 2016
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 12:14, s. 3388-3397
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the interactions between cationic nanoparticles and anionic starch, where the starch was composed of 20 wt% of amylose, a linear polymer, and 80 wt% of amylopectin, a branched polymer. The mechanism of aggregation was investigated by scattering techniques. It was found that the cationic particles formed large aggregates with the starch as a result of selective adsorption of the amylopectin. Amylose did not participate significantly in the aggregate formation even when the charge ratio of starch to particles was <1. For starch to particle ratio 41 stabilization was recovered mostly due to the large hindrance brought about by the highly branched amylopectin. This results in a shift of the stabilization mechanism from electrostatic to electrosteric. The internal structure of the aggregates was composed of primary particles with starch coils adsorbed on the surface. This information supports the proposed aggregation mechanism, which is based on adsorption of the negatively charged starch in patches on the positively charged nanoparticles causing attractive interaction between the particles.
  •  
47.
  • Iselau, Frida, 1979, et al. (författare)
  • Formation and relaxation kinetics of starch-particle complexes
  • 2016
  • Ingår i: Soft Matter. - 1744-6848 .- 1744-683X. ; 12:47, s. 9509-9519
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation and relaxation kinetics of starch-particle complexes were investigated in this study. The combination of cationic nanoparticles in suspension and anionic starch in solution gave rise to aggregate formation which was studied by dynamic light scattering, revealing the initial adsorption of the starch molecules on the particle surface. By examining the stability ratio, W, it was found that even in the most destabilized state, i.e. at charge neutralization, the starch chains had induced steric stabilization to the system. At higher particle and starch concentrations relaxation of the aggregates could be seen, as monitored by a decrease in turbidity with time. This relaxation was evaluated by fitting the data to the Kohlrausch-Williams-Watts function. It was found that irrespective of the starch to particle charge ratio the relaxation time was similar. Moreover, a molecular weight dependence on the relaxation time was found, as well as a more pronounced initial aggregated state for the higher molecular weight starch. This initial aggregate state could be due to bridging flocculation. With time, as the starch chains have relaxed into a final conformation on the particle surface, bridging will be less important and is gradually replaced by patches that will cause patchwise flocculation. After an equilibration time no molecular weight dependence on aggregation could be seen, which confirms the patchwise flocculation mechanism.
  •  
48.
  • Izzo, M. G., et al. (författare)
  • Rayleigh scattering and disorder-induced mixing of polarizations in amorphous solids at the nanoscale: 1-octyl-3-methylimidazolium chloride glass
  • 2020
  • Ingår i: Physical Review B. - 2469-9969 .- 2469-9950. ; 102:21
  • Tidskriftsartikel (refereegranskat)abstract
    • Acousticlike excitations in topologically disordered media at mesocale/nanoscale present anomalous features with respect to the Debye's theory. The so-called Rayleigh scattering manifests in a strong increase of the attenuation of the acousticlike excitations and a softening of the phase velocity with respect to its continuum limit value. Mean field models developed in the random media theory framework can successfully predict the occurrence, at the proper length scale, of Rayleigh scattering. The overall attenuation in the Rayleigh region is, however, underestimated. In the framework of random media theory we developed an analytical model, which permits a quantitative description of the acousticlike excitations in topological glasses in the whole first pseudo-Brillouin zone. The underestimation of the Rayleigh scattering is avoided and, importantly, the model allows to account also for the polarization properties of the acousticlike excitations. In a three-dimensional medium an acoustic wave is characterized by its phase velocity, intensity, and polarization. Rayleigh scattering emphasizes how the topological disorder affects the first two properties. The topological disorder is, however, expected to influence also the third one. In common with the Rayleigh scattering, hallmarks possibly related to the mixing of polarizations have been traced in different classes of amorphous solids at nanoscale. The quantitative theoretical approach developed permits to demonstrate how the mixing of polarizations generates a distinctive feature in the dynamic structure factor of amorphous solids. The modeling capability of the proposed mean field theory is tested on glassy 1-octyl-3-methylimidazolium chloride, whose spatial distribution of the elastic moduli is well assessed and can be experimentally characterized. Contrast between theoretical and experimental features for the selected glass reveals an excellent agreement. The mean field approach we present retains a certain degree of generality and can be possibly extended to different stochastic media or different wave fields.
  •  
49.
  • Jiao, Xingxing, et al. (författare)
  • Morphology evolution of electrodeposited lithium on metal substrates
  • 2023
  • Ingår i: Energy Storage Materials. - 2405-8297. ; 61
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium (Li) metal is deemed to be the high-energy-density anode material for next generation batteries, but its practical application is impeded by the uneven electrodeposition during charge of battery, which leads to the low Coulombic efficiency and potential safety issue. Here, multiscale modeling is fabricated to understand the morphology evolution of Li during electrodeposition process, from the self-diffusion of Li adatoms on electrode surface, to the nucleation process, and to the formation of Li microstructures, revealing the correlation between final morphology and deposition substrates. Energy batteries and self-diffusion of Li adatom on various substrates (lithium, copper, nickel, magnesium, and silver) result in the different nucleation size, which is calculated by kinetic Monte Carlo simulation based on classical nucleation theory. Formation of Li substructures that are grown from Li nuclei, is revealed by phase field modeling coupled with cellular automaton method. Our results show that larger Li nuclei is obtained under faster self-diffusion of Li adatom, leading to the low aspect ratio of Li substructures and the subsequent morphology evolution of electrodeposited Li. Furthermore, the electrodeposition of Li is strongly regulated by the selection of substrates, giving the practical guideline of anode design in rechargeable Li metal batteries. It is worthy to mention that this method to investigate the electro-crystallization process involving nucleation and growth can be transplanted to the other metallic anode, such as sodium, potassium, zinc, magnesium, calcium and the like.
  •  
50.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 41-50 av 172
Typ av publikation
tidskriftsartikel (164)
konferensbidrag (3)
forskningsöversikt (3)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (166)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Matic, Aleksandar, 1 ... (171)
Jacobsson, Per, 1958 (29)
Börjesson, Lars, 195 ... (28)
Agostini, Marco, 198 ... (23)
Xiong, Shizhao, 1985 (23)
Johansson, Patrik, 1 ... (20)
visa fler...
Karlsson, Maths, 197 ... (18)
Martinelli, Anna, 19 ... (16)
Sadd, Matthew, 1994 (15)
Ahn, J. H. (15)
Ahmed, Istaq, 1972 (14)
Eriksson, Sten, 1958 (13)
Navarra, M.A. (11)
Lim, Du Hyun, 1983 (11)
Aguilera Medina, Lui ... (10)
Panero, S. (9)
Scheers, Johan, 1979 (9)
Liu, Yangyang (9)
Brutti, Sergio (8)
Engberg, Dennis, 196 ... (8)
Palmqvist, Anders, 1 ... (8)
Scrosati, B (7)
Mozhzhukhina, Natali ... (7)
Lundin, Filippa, 199 ... (7)
Croce, F. (6)
Cavallo, Carmen, 198 ... (6)
Ahn, J. (6)
Hwang, Jang Yeon (6)
Knee, Christopher, 1 ... (6)
Nordström, Jonas, 19 ... (6)
Scrosati, Bruno (5)
Rizell, Josef, 1996 (5)
Xu, Xieyu (5)
Jiao, Xingxing (5)
Song, Zhongxiao (5)
Ahlberg, Elisabet, 1 ... (4)
Thomsen, Peter, 1953 (4)
Sun, Yang Kook (4)
Xiong, Shizhao (4)
Palmquist, Anders, 1 ... (4)
Frick, Bernhard (4)
Lindberg, Simon, 198 ... (4)
Nitze, Florian, 1981 ... (4)
Shah, Furqan A. (4)
Olsson, Martina, 199 ... (4)
Calcagno, Giulio, 19 ... (4)
Manuel, J. (4)
Kapitanova, Olesya O ... (4)
Niss, Kristine (4)
Jankowski, Piotr, 19 ... (4)
visa färre...
Lärosäte
Chalmers tekniska högskola (172)
Göteborgs universitet (14)
Lunds universitet (9)
Uppsala universitet (5)
RISE (3)
Umeå universitet (1)
visa fler...
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (172)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (149)
Teknik (82)
Medicin och hälsovetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy