SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "((L773:1522 2586)) srt2:(2020-2024)"

Sökning: ((L773:1522 2586)) > (2020-2024)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Alsaqal, Salem, et al. (författare)
  • The Combination of MR Elastography and Proton Density Fat Fraction Improves Diagnosis of Nonalcoholic Steatohepatitis.
  • 2022
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 56:2, s. -379
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is rapidly increasing worldwide. It is subdivided into nonalcoholic fatty liver (NAFL) and the more aggressive form, nonalcoholic steatohepatitis (NASH), which carries a higher risk of developing fibrosis and cirrhosis. There is currently no reliable non-invasive method for differentiating NASH from NAFL.PURPOSE: To investigate the ability of magnetic resonance imaging (MRI)-based imaging biomarkers to diagnose NASH and moderate fibrosis as well as assess their repeatability.STUDY TYPE: Prospective.SUBJECTS: Sixty-eight participants (41% women) with biopsy-proven NAFLD (53 NASH and 15 NAFL). Thirty participants underwent a second MRI in order to assess repeatability.FIELD STRENGTH/SEQUENCE: 3.0 T; MR elastography (MRE) (a spin-echo echo-planar imaging [SE-EPI] sequence with motion-encoding gradients), MR proton density fat fraction (PDFF) and R2* mapping (a multi-echo three-dimensional gradient-echo sequence), T1 mapping (a single-point saturation-recovery technique), and diffusion-weighted imaging (SE-EPI sequence).ASSESSMENT: Quantitative MRI measurements were obtained and assessed alone and in combination with biochemical markers (cytokeratin-18 [CK18] M30, alanine transaminase [ALT], and aspartate transaminase [AST]) using logistic regression models. Models that could differentiate between NASH and NAFL and between moderate to advanced fibrosis (F2-4) and no or mild fibrosis (F0-1), based on the histopathological results, were identified.STATISTICAL TESTS: Independent samples t-test, Pearson's chi-squared test, area under the receiver operating characteristic curve (AUROC), Spearman's correlation, intra-individual coefficient of variation, and intraclass correlation coefficient (ICC). Statistical significance was set at P < 0.05.RESULTS: There was a significant difference between the NASH and NAFL groups with liver stiffness assessed with MRE, CK18 M30, and ALT, with an AUROC of 0.74, 0.76, and 0.70, respectively. Both MRE and PDFF contributed significantly to a bivariate model for diagnosing NASH (AUROC = 0.84). MRE could significantly differentiate between F2-4 and F0-1 (AUROC = 0.74). A model combining MRE with AST improved the diagnosis of F2-4 (AUROC = 0.83). The ICC for repeatability was 0.94 and 0.99 for MRE and PDFF, respectively.DATA CONCLUSION: MRE can potentially diagnose NASH and differentiate between fibrosis stages. Combining MRE with PDFF improves the diagnosis of NASH.LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
  •  
4.
  • Berggren, Klas, et al. (författare)
  • Super-Resolution Cine Image Enhancement for Fetal Cardiac Magnetic Resonance Imaging
  • 2022
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1522-2586 .- 1053-1807. ; 56:1, s. 223-231
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundFetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images.PurposeTo combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time.Study TypeProspective.SubjectsTwenty-eight fetuses (gestational week 36 [interquartile range 33–38 weeks]).Field Strength/Sequence1.5 T, balanced steady-state free precession (bSSFP) cine sequence.AssessmentImages were acquired using fully sampled Doppler ultrasound-gated clinical bSSFP cine as reference, with equivalent cine sequences with decreased phase-encoding resolution (25%, 33%, and 50% of clinical standard). Two super-resolution methods based on convolutional neural networks were proposed and evaluated (phasrGAN and phasrresnet). Data were partitioned into training (36 cine slices), validation (3 cine slices), and test sets (67 cine slices) without overlap. Conventional reconstruction methods using bicubic interpolation and k-space zeropadding were used for comparison. Three blinded observers scored image quality between 1 and 10.Statistical TestsImage scores are reported as median [interquartile range] and were compared using Mann–Whitney's nonparametric test with P < 0.05 showing statistically significant differences.ResultsBoth proposed methods showed no significant difference in image quality compared to clinical images (8 [7–8.5]) down to 33% (phasrGAN 8 [6.5–8]; phasrresnet 8 [7–8], all P ≥ 0.19) phase-encoding resolution, i.e., up to three times faster image acquisition, whereas bicubic interpolation and k-space zeropadding showed significantly lower quality for 33% phase-encoding resolution (both 7 [6–8]).Data ConclusionSuper-resolution enhancement can be used for fetal cine cardiac MRI to reduce image acquisition time while maintaining image quality. This may lead to an improved success rate for fetal cine MR imaging, as the impact of fetal motion is lessened by shortened acquisitions.Level of Evidence1Technical EfficacyStage 2
  •  
5.
  •  
6.
  • Bustamante, Mariana, et al. (författare)
  • Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning
  • 2023
  • Ingår i: Journal of Magnetic Resonance Imaging. - Hoboken, NJ, United States : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 57:1, s. 191-203
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Segmenting the whole heart over the cardiac cycle in 4D flow MRI is a challenging and time-consuming process, as there is considerable motion and limited contrast between blood and tissue.Purpose To develop and evaluate a deep learning-based segmentation method to automatically segment the cardiac chambers and great thoracic vessels from 4D flow MRI. Study Type Retrospective.Subjects A total of 205 subjects, including 40 healthy volunteers and 165 patients with a variety of cardiac disorders were included. Data were randomly divided into training (n = 144), validation (n = 20), and testing (n = 41) sets.Field Strength/Sequence A 3 T/time-resolved velocity encoded 3D gradient echo sequence (4D flow MRI).Assessment A 3D neural network based on the U-net architecture was trained to segment the four cardiac chambers, aorta, and pulmonary artery. The segmentations generated were compared to manually corrected atlas-based segmentations. End-diastolic (ED) and end-systolic (ES) volumes of the four cardiac chambers were calculated for both segmentations.Statistical tests Dice score, Hausdorff distance, average surface distance, sensitivity, precision, and miss rate were used to measure segmentation accuracy. Bland-Altman analysis was used to evaluate agreement between volumetric parameters.Results The following evaluation metrics were computed: mean Dice score (0.908 +/- 0.023) (mean +/- SD), Hausdorff distance (1.253 +/- 0.293 mm), average surface distance (0.466 +/- 0.136 mm), sensitivity (0.907 +/- 0.032), precision (0.913 +/- 0.028), and miss rate (0.093 +/- 0.032). Bland-Altman analyses showed good agreement between volumetric parameters for all chambers. Limits of agreement as percentage of mean chamber volume (LoA%), left ventricular: 9.3%, 13.5%, left atrial: 12.4%, 16.9%, right ventricular: 9.9%, 15.6%, and right atrial: 18.7%, 14.4%; for ED and ES, respectively.Data conclusion The addition of this technique to the 4D flow MRI assessment pipeline could expedite and improve the utility of this type of acquisition in the clinical setting. Evidence Level 4Technical Efficacy Stage 1
  •  
7.
  • Bustamante, Mariana, et al. (författare)
  • Using Deep Learning to Emulate the Use of an External Contrast Agent in Cardiovascular 4D Flow MRI
  • 2021
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 54:3, s. 777-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Although contrast agents would be beneficial, they are seldom used in four-dimensional (4D) flow magnetic resonance imaging (MRI) due to potential side effects and contraindications. Purpose To develop and evaluate a deep learning architecture to generate high blood-tissue contrast in noncontrast 4D flow MRI by emulating the use of an external contrast agent. Study Type Retrospective. Subjects Of 222 data sets, 141 were used for neural network (NN) training (69 with and 72 without contrast agent). Evaluation was performed on the remaining 81 noncontrast data sets. Field Strength/Sequences Gradient echo or echo-planar 4D flow MRI at 1.5 T and 3 T. Assessment A cyclic generative adversarial NN was trained to perform image translation between noncontrast and contrast data. Evaluation was performed quantitatively using contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), structural similarity index (SSIM), mean squared error (MSE) of edges, and Dice coefficient of segmentations. Three observers performed a qualitative assessment of blood-tissue contrast, noise, presence of artifacts, and image structure visualization. Statistical Tests The Wilcoxon rank-sum test evaluated statistical significance. Kendalls concordance coefficient assessed interobserver agreement. Results Contrast in the regions of interest (ROIs) in the NN enhanced images increased by 88%, CNR increased by 63%, and SNR improved by 48% (all P < 0.001). The SSIM was 0.82 +/- 0.01, and the MSE of edges was 0.09 +/- 0.01 (range [0,1]). Segmentations based on the generated images resulted in a Dice similarity increase of 15.25%. The observers managed to differentiate between contrast MR images and our results; however, they preferred the NN enhanced images in 76.7% of cases. This percentage increased to 93.3% for phase-contrast MR angiograms created from the NN enhanced data. Visual grading scores were blood-tissue contrast = 4.30 +/- 0.74, noise = 3.12 +/- 0.98, and presence of artifacts = 3.63 +/- 0.76. Image structures within and without the ROIs resulted in scores of 3.42 +/- 0.59 and 3.07 +/- 0.71, respectively (P < 0.001). Data Conclusion The proposed approach improves blood-tissue contrast in MR images and could be used to improve data quality, visualization, and postprocessing of cardiovascular 4D flow data. Evidence Level 3 Technical Efficacy Stage 1
  •  
8.
  • de Boer, Anneloes, et al. (författare)
  • Consensus-Based Technical Recommendations for Clinical Translation of Renal Phase Contrast MRI
  • 2022
  • Ingår i: Journal of Magnetic Resonance Imaging. - : John Wiley & Sons. - 1053-1807 .- 1522-2586. ; 55:2, s. 323-335
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool.PURPOSE: To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies.STUDY TYPE: Systematic consensus process using a modified Delphi method.POPULATION: Not applicable.SEQUENCE FIELD/STRENGTH: Renal fast gradient echo-based 2D PC-MRI.ASSESSMENT: An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated.STATISTICAL TESTS: Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts.RESULTS: Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting.DATA CONCLUSION: These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI.LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
  •  
9.
  •  
10.
  • Fagan, A. J., et al. (författare)
  • 7T MR Safety
  • 2021
  • Ingår i: Journal of Magnetic Resonance Imaging. - : Wiley. - 1053-1807 .- 1522-2586. ; 53:2333-346, s. 333-346
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36
Typ av publikation
tidskriftsartikel (35)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
af Buren, S (3)
Kits, A (3)
De Luca, F (3)
Skare, S (3)
Delgado, AF (3)
Heiberg, Einar (3)
visa fler...
Carlsson, Marcus (2)
Sprenger, T (2)
Lonn, L (2)
Engvall, Jan, 1953- (2)
Björkman-Burtscher, ... (2)
Madore, B. (2)
Johansson, Lars (1)
Martini, A. (1)
Dahlqvist Leinhard, ... (1)
Segelmark, Mårten (1)
Nair, S (1)
Nickander, J (1)
Ahlström, Håkan, 195 ... (1)
Liuba, Petru (1)
Eklund, M (1)
Wiklund, P (1)
Uhlin, Fredrik (1)
Hugosson, Jonas, 195 ... (1)
Lönn, L (1)
Falk Delgado, A (1)
Wieslander, B (1)
Nilsson, Markus (1)
Muller, S. (1)
Engvall, Jan (1)
Rorsman, Fredrik (1)
Arheden, Håkan (1)
Maier, Stephan E, 19 ... (1)
Mazya, MV (1)
Wanders, Alkwin (1)
Hockings, Paul, 1956 (1)
Hellström, Mikael, 1 ... (1)
Dasu, Alexandru, 197 ... (1)
Alsaqal, Salem (1)
Hockings, Paul (1)
Gummesson, Anders (1)
Hedström, Anders (1)
Hulthe, Johannes (1)
Niessen, Heiko G (1)
Schoelch, Corinna (1)
Schultheis, Christia ... (1)
Vessby, Johan (1)
Ebeling Barbier, Cha ... (1)
Wallström, Jonas (1)
Caroli, Anna (1)
visa färre...
Lärosäte
Linköpings universitet (12)
Lunds universitet (8)
Karolinska Institutet (8)
Göteborgs universitet (4)
Umeå universitet (3)
Uppsala universitet (3)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (36)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy