SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "((WFRF:(Hao Xiao))) srt2:(2010-2014) ;srt2:(2012)"

Sökning: ((WFRF:(Hao Xiao))) srt2:(2010-2014) > (2012)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fernández Galván, Ignacio, 1977-, et al. (författare)
  • Role of conical intersection seam topography in the chemiexcitation of 1,2-dioxetanes
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 24:3, s. 1638-1653
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemiexcitation, the generation of electronic excited states by a thermal reaction initiated on the ground state, is an essential step in chemiluminescence, and it is mediated by the presence of a conical intersection that allows a nonadiabatic transition from ground state to excited state. Conical intersections classified as sloped favor chemiexcitation over ground state relaxation. The chemiexcitation yield of 1,2-dioxetanes is known to increase upon methylation. In this work we explore to which extent this trend can be attributed to changes in the conical intersection topography or accessibility. Since conical intersections are not isolated points, but continuous seams, we locate regions of the conical intersection seams that are close to the configuration space traversed by the molecules as they react on the ground state. We find that conical intersections are energetically and geometrically accessible from the reaction trajectory, and that topographies favorable to chemiexcitation are found in all three molecules studied. Nevertheless, the results suggest that dynamic effects are more important for explaining the different yields than the static features of the potential energy surfaces.
  •  
3.
  • Hao, Qian, et al. (författare)
  • Soil silicon fractions along karst hillslopes of southwestern China
  • 2022
  • Ingår i: Journal of Soils and Sediments. - : Springer Nature. - 1439-0108 .- 1614-7480. ; 22, s. 1121-1134
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The karst region in southwestern China is undergoing soil erosion and rocky desertification. The different silicon (Si) fractions along the hillslopes in this mountainous region could benefit plant growth and alleviate the ecological deterioration. However, extensive distribution of carbonate rocks may lead to limited plant available Si. The mountainous terrain in karst region also leads to more Si output, which seriously affects the biogeochemical cycle of Si in this area. Yet, the soil Si fractions in the karst region have not been fully evaluated. Methods Soil profiles and their corresponding plants were sampled from two typical karst mountains in Guizhou, China. The different fractions of non-crystalline Si in soil, accounting for the most important pool for Si availability to plants, were analyzed by the improved sequential chemical extraction and Si concentrations in plants grown in this region were also measured. Results The concentration and storage of non-crystalline Si were higher at lower slopes (storage was 2.44, 2.73, and 3.25 kg center dot m(-2) for upper, middle, and lower slopes, respectively) than other slope positions. Grasses dominated at lower slopes and contained significantly higher Si (mean +/- SD: 14.42 +/- 6.63 mg center dot g(-1)) than trees and shrubs (1.94 +/- 1.78 and 1.29 +/- 1.00 mg center dot g(-1), respectively), which were primarily distributed on upper slopes. However, Si concentrations of the same plant species in different slope positions had no significant correlation with soil acid Na acetate-Si, the Si regarded as directly available for plants. Conclusions This study suggests that plant species and soil properties have a significant impact on the soil Si distribution of hillslopes in karst region. Soil erosion may decrease non-crystalline Si concentrations in soils and impair Si uptake in grasses, which need to be considered in ecosystem management in this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy