SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "((WFRF:(Kervella P.))) srt2:(2015-2019) srt2:(2015)"

Search: ((WFRF:(Kervella P.))) srt2:(2015-2019) > (2015)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Creevey, O. L., et al. (author)
  • Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 575
  • Journal article (peer-reviewed)abstract
    • Metal-poor halo stars are important astrophysical laboratories that allow us to unravel details about many aspects of astrophysics, including the chemical conditions at the formation of our Galaxy, understanding the processes of diffusion in stellar interiors, and determining precise effective temperatures and calibration of colour-effective temperature relations. To address any of these issues the fundamental properties of the stars must first be determined. HD140283 is the closest and brightest metal-poor Population II halo star (distance = 58 pc and V = 7.21), an ideal target that allows us to approach these questions, and one of a list of 34 benchmark stars defined for Gaia astrophysical parameter calibration. In the framework of characterizing these benchmark stars, we determined the fundamental properties of HD140283 (radius, mass, age, and effective temperature) by obtaining new interferometric and spectroscopic measurements and combining them with photometry from the literature. The interferometric measurements were obtained using the visible interferometer VEGA on the CHARA array and we determined a 1D limb-darkened angular diameter of theta(1D) = 0.353 +/- 0.013 milliarcsec. Using photometry from the literature we derived the bolometric flux in two ways: a zero reddening solution (A(V) = 0.0 mag) of F-bol of 3.890 +/- 0.066 x 10(-8) erg s(-1) cm(-2),and a maximum of A(V) = 0.1 mag solution of 4.220 +/- 0.067 x 10(-8) erg s(-1) cm(-2). The interferometric T-eff is thus between 5534 +/- 103 K and 5647 +/- 105 K and its radius is R = 2.21 +/- 0.08 R-circle dot. Spectroscopic measurements of HD140283 were obtained using HARPS, NARVAL, and UVES and a 1D LTE analysis of Ha line wings yielded T-effspec = 5626 +/- 75 K. Using fine-tuned stellar models including diffusion of elements we then determined the mass M and age t of HD140283. Once the metallicity has been fixed, the age of the star depends on M, initial helium abundance Y-i, and mixing-length parameter alpha, only two of which are independent. We derive simple equations to estimate one from the other two. We need to adjust a to much lower values than the solar one (similar to 2) in order to fit the observations, and if A(V) = 0.0 mag then 0.5 <= alpha <= 1. We give an equation to estimate t from M, Y-i (alpha), and A(V). Establishing a reference alpha = 1.00 and adopting Y-i = 0.245 we derive a mass and age of HD140283: M = 0.780 +/- 0.010 M-circle dot and t = 13.7 +/- 0.7 Gyr (A(V) = 0.0 mag), or M = 0.805 +/- 0.010 M-circle dot and t = 12.2 +/- 0.6 Gyr (A(V) = 0.1 mag). Our stellar models yield an initial (interior) metal-hydrogen mass fraction of [Z/X](i) = -1.70 and log g = 3.65 +/- 0.03. Theoretical advances allowing us to impose the mixing-length parameter would greatly improve the redundancy between M, Y-i, and age, while from an observational point of view, accurate determinations of extinction along with asteroseismic observations would provide critical information allowing us to overcome the current limitations in our results.
  •  
3.
  • O Gorman, Eamon, 1984, et al. (author)
  • ALMA Observations of Anisotropic Dust Mass Loss around VY CMa
  • 2015
  • In: 4th ALMA Science Conference on Revolution in Astronomy with ALMA: The Third Year, Tokyo, Japan, 8-11 December. - 9781583818831 ; 499, s. 335-336
  • Conference paper (peer-reviewed)abstract
    • We present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R-star (71 AU). Two prominent dust components are detected and resolved. We find that at least 17% of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of 5 x 10(-6) M-circle dot yr(-1). The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone.
  •  
4.
  • O Gorman, Eamon, 1984, et al. (author)
  • ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris
  • 2015
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 573, s. Article no. L1-
  • Journal article (peer-reviewed)abstract
    • The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R-star (71 AU). Two prominent dust components are detected and resolved. The brightest dust component. C, is located 334 mas (61 R-star) southeast of the star and has a dust mass of at least 2.5 x 10(-4) M-circle dot. It has a dust emissivity spectral index of beta = -0.1 at its peak, implying that it is optically thick at these frequencies with a cool core of T-d less than or similar to 100 K. Interestingly, not a single molecule in the ALMA data has emission close to the peak of this massive dust clump. The other main dust component. VY, is located at the position of the star and contains a total dust mass of 4.0 x 10(-)5 M-circle dot. It also contains a weaker dust feature extending over 60 R-star to the north with the total component having a typical dust emissivity spectral index of beta = 0.7. We find that at least 17% of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of 5 x 10(-6) M-circle dot yr(-1). The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view