SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "((WFRF:(Liu Xiao Qing))) srt2:(2015-2019) srt2:(2018)"

Sökning: ((WFRF:(Liu Xiao Qing))) srt2:(2015-2019) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feitosa, Mary F., et al. (författare)
  • Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries
  • 2018
  • Ingår i: PLOS ONE. - : Public library science. - 1932-6203. ; 13:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in approximate to 131 K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P <1.0 x 10(-5)). In Stage 2, these SNVs were tested for independent external replication in individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10(-8)). For African ancestry samples, we detected 18 potentially novel BP loci (P< 5.0 x 10(-8)) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2 have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.
  •  
2.
  • Han, Xue-Min, et al. (författare)
  • Evolution and Function of the Populus SABATH Family Reveal That a Single Amino Acid Change Results in a Substrate Switch
  • 2018
  • Ingår i: Plant and Cell Physiology. - : Oxford University Press. - 0032-0781 .- 1471-9053. ; 59:2, s. 392-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary mechanisms of substrate specificities of enzyme families remain poorly understood. Plant SABATH methyltransferases catalyze methylation of the carboxyl group of various low molecular weight metabolites. Investigation of the functional diversification of the SABATH family in plants could shed light on the evolution of substrate specificities in this enzyme family. Previous studies identified 28 SABATH genes from the Populus trichocarpa genome. In this study, we re-annotated the Populus SABATH gene family, and performed molecular evolution, gene expression and biochemical analyses of this large gene family. Twenty-eight Populus SABATH genes were divided into three classes with distinct divergences in their gene structure, expression responses to abiotic stressors and enzymatic properties of encoded proteins. Populus class I SABATH proteins converted IAA to methyl-IAA, class II SABATH proteins converted benzoic acid (BA) and salicylic acid (SA) to methyl-BA and methyl-SA, while class III SABATH proteins converted farnesoic acid (FA) to methyl-FA. For Populus class II SABATH proteins, both forward and reverse mutagenesis studies showed that a single amino acid switch between PtSABATH4 and PtSABATH24 resulted in substrate switch. Our findings provide new insights into the evolution of substrate specificities of enzyme families.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy