SwePub
Sök i SwePub databas

  Utökad sökning

Booleska operatorer måste skrivas med VERSALER

AND är defaultoperator och kan utelämnas

Träfflista för sökning "(AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Cell and Molecular Biology)) pers:(Malmström Anders) srt2:(1986-1989)"

Sökning: (AMNE:(MEDICAL AND HEALTH SCIENCES Basic Medicine Cell and Molecular Biology)) pers:(Malmström Anders) > (1986-1989)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cöster, Lars, et al. (författare)
  • Structure of proteoheparan sulfates from fibroblasts. Confluent and proliferating fibroblasts produce at least three types of proteoheparan sulfates with functionally different core proteins
  • 1986
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 261:26, s. 12079-12088
  • Tidskriftsartikel (refereegranskat)abstract
    • [3H]Leucine- and [35S]sulfate-labeled proteoheparan sulfates were isolated from postconfluent or proliferating cultures of human skin fibroblasts. Cell layers were solubilized by Triton X-100, and transferrin-binding macromolecules were isolated by affinity chromatography. Proteoglycans with no affinity for transferrin were purified by using ion-exchange and gel permeation chromatography. Postconfluent cells synthesize a proteoheparan sulfate of Mr 350,000 (as determined by gel permeation chromatography) which has affinity for transferrin as well as for octyl-Sepharose. Its core protein (Mr 180,000) consists of two disulfide-bonded polypeptides of Mr 90,000. This species was not detected in cultures of proliferating cells. Proliferating and confluent cells also synthesize other forms of proteoheparan sulfates (Mr 200,000-400,000) which have no affinity for transferrin. However, most of them have affinity for octyl-Sepharose. The core protein of proteoheparan sulfates made by proliferating cells has Mr 50,000. A smaller form (Mr 250,000) of this proteoglycan was solubilized by Triton X-100, whereas a larger form (Mr 400,000) remained associated with the pericellular matrix. A third type of proteoheparan sulfate (Mr 200,000) without affinity for transferrin nor octyl-Sepharose was associated with postconfluent cell layers but not with proliferating ones. Its core protein has Mr 35,000. Heparan sulfate oligosaccharides (Mr 6,000 or higher) were found in proliferating cells but not in postconfluent ones.
  •  
2.
  • Mörgelin, Matthias, et al. (författare)
  • Shared and distinct structural features of interstitial proteoglycans from different bovine tissues revealed by electron microscopy
  • 1989
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 264:20, s. 12080-12090
  • Tidskriftsartikel (refereegranskat)abstract
    • Large and small interstitial proteoglycans were purified from different bovine tissues, i.e. cartilage, sclera, tendon, aorta, cornea, and bone. The structure of the molecules was compared using the glycerol spraying/rotary shadowing technique for electron microscopy. Large proteoglycans from sclera and tendon have a core protein with a domain structure similar to that previously reported for cartilage proteoglycans (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). It is comprised of a pair of globules at one end of the molecule, connected by a short extended segment, followed by a long extended domain which is terminated by a third globular domain. Large aorta proteoglycans show a somewhat different structure, with only one globular domain at each end of a long extended segment. Large sclera and aorta proteoglycans form aggregates with hyaluronate and cartilage link protein in a manner similar to that of large cartilage proteoglycans. The large proteoglycans show considerable tissue variability with regard to number, length, and spacing of glycosaminoglycan side chains. The small proteoglycans reveal a small globular core protein to which one or two glycosaminoglycans are attached. Although the main structural features do not differ, proteoglycans of the S1 class have an average glycosylation close to two glycosaminoglycans/molecule, while that of the S2 class is close to one. Differences in glycosaminoglycan length were observed between tissues and between the S1 and S2 class of proteoglycan derived from a single tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy