SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(Hålenius mat:art lärosäte:nrm språk:eng) conttype:(refereed) srt2:(2020-2023)"

Sökning: (Hålenius mat:art lärosäte:nrm språk:eng) conttype:(refereed) > (2020-2023)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hålenius, Ulf, et al. (författare)
  • Mangani-pargasite, NaCa2(Mg4Mn3+)(Si6Al2)O22(OH)2, a new mineral species of the amphibole supergroup
  • 2020
  • Ingår i: Periodico di Mineralogia. - : EDIZIONI NUOVA CULTURA. - 0369-8963 .- 2239-1002. ; 89:2, s. 125-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Mangani-pargasite, ideally NaCa2(Mg4Mn3+)(Si6Al2)O-22(OH)(2), is a new mineral species of the calcium amphibole subgroup of the amphibole supergroup. The type specimen was found on the mine dump of the Langban Fe-Mn-(Ba-As-Pb-Sb) deposit in Varmland, Sweden. Crystal chemical analyses resulted in the empirical chemical formula: (A)(Na0.90Pb0.07K0.03)(Sigma 1.00)(B)(Ca1.93Mn0.072+)(Sigma 2.00)(C)(Mg4.25Mn0.393+Al0.26Fe0.103+)Sigma(T)(5.00)(Si6.35Al1.65)Sigma 8.00O22W(OH)(2). In order to complete the description of this newly approved (IMA 2018-151) mineral we report here additional data to those published in papers by Jonsson and Halenius (2010) and Halenius and Bosi (2012). Mangani-pargasite is biaxial positive, with alpha=1.635(5), beta=1.645(5), gamma=1.660(5) and the measured optic angle 2V is 85(5)degrees. The dispersion is weak (r>v), and the optic orientation is: Y parallel to b; Z<^>c=25(3)degrees. Mangani-pargasite is red to brownish red with weak pleochroism; X=pale reddish brown, Y=pale reddish brown and Z=pale brownish red; X approximate to Y>Z. The unit-cell parameters are a=9.9448(5), b=18.0171(9), c=5.2829(3) angstrom, beta=105.445(3)degrees, V=912.39(9) angstrom(3), Z=2, space group C2/m. The ten strongest reflections in the X-ray powder diffraction pattern [d-values in angstrom, I, (h k l)] are: 8.420, 29, (110); 3.368, 17, (131), 3.279, 49, (240); 3.141, 100, (310); 2.817, 44, (33 0); 2.698, 21, (151); 2.389, 18, (350); 1.904, 29, (510); 1.650, 22, (461) and 1.448, 46, (661).
  •  
2.
  • Altieri, Alessandra, et al. (författare)
  • Blue growth zones caused by Fe2+ in tourmaline crystals from the San Piero in Campo gem-bearing pegmatites, Elba Island, Italy
  • 2022
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 86:6, s. 910-919
  • Tidskriftsartikel (refereegranskat)abstract
    • Two tourmaline crystals with a blue growth zone at the analogous pole, respectively from the San Silvestro and the Fucili pegmatites, located in the San Piero in Campo village, Elba Island (Tyrrhenian Sea, Italy), have been described for the first time using compositional and spectroscopic data to define their crystal-chemical aspects and the causes of the colour. Compositional data obtained by electron microprobe analysis indicate that both tourmalines belong to the elbaite–fluor-elbaite series. The upper part of each crystal is characterised by an increased amount of Fe (FeO up to ~1 wt.%) and a Ti content below the detection limit. Optical absorption spectra recorded on the blue zone of both samples show absorption bands caused by spin-allowed d-d transitions in [6]-coordinated Fe2+, and no intervalence charge transfer Fe2+-Ti interactions, indicating that Fe2+ is the only chromophore. Mössbauer analysis of the blue zone of the Fucili sample confirmed the Fe2+ oxidation state, implying that the redox conditions in the crystallisation environment were relatively reducing. The presence of colour changes at the analogous termination during tourmaline crystal growth suggests a change in the composition of the crystallisation environment, probably associated with a partial opening of the system.
  •  
3.
  • Altieri, Alessandra, et al. (författare)
  • Dark-coloured Mn-rich overgrowths in an elbaitic tourmaline crystal from the Rosina pegmatite, San Piero in Campo, Elba Island, Italy: witness of late-stage opening of the geochemical system
  • 2023
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 87:1, s. 130-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Multicoloured tourmalines from Elba Island, commonly display dark-coloured terminations due to incorporation of Fe, and also occasionally Mn. The mechanisms which led to the availability of these elements in the late-stage residual fluids are not yet completely understood. For this purpose, we investigated a representative tourmaline crystal found naturally in two fragments within a wide miarolitic cavity in the Rosina pegmatite (San Piero in Campo, Elba Island, Italy), and characterised by late-stage dark-coloured overgrowths. Microstructural and paragenetic observations, together with compositional and spectroscopic data (electron microprobe and optical absorption spectroscopy), provide evidence which shows that the formation of the dark-coloured Mn-rich overgrowths are the result of a pocket rupture. This event caused alteration of the cavity-coating spessartine garnet by highly-reactive late-stage cavity fluids by leaching processes, with the subsequent release of Mn to the residual fluids. We argue that the two fragments were originally a single crystal, which underwent natural breakage followed by the simultaneous growth of Mn-rich dark terminations at both breakage surfaces. This conclusion supports the evidence for a pocket rupture event, responsible for both the shattering of the tourmaline crystal and the compositional variation of the cavity-fluids related to the availability of Mn, which was incorporated by the tourmaline crystals. Additionally, a comparison of the dark overgrowths formed at the analogous and the antilogous poles, provides information on tourmaline crystallisation at the two different poles. The antilogous pole is characterised by a higher affinity for Ca, F and Ti, and a selective uptake of Mn2+, even in the presence of a considerable amount of Mn3+ in the system. This uneven uptake of Mn ions resulted in the yellow–orange colouration of the antilogous overgrowth (Mn2+ dependent) rather than the purple-reddish colour of the analogous overgrowths (Mn3+ dependent).
  •  
4.
  •  
5.
  • Ardit, Matteo, et al. (författare)
  • Vanadium-induced coloration in grossite (CaAl4O7) and hibonite (CaAl12O19)
  • 2021
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 106:4, s. 599-608
  • Tidskriftsartikel (refereegranskat)abstract
    • High concentrations of vanadium cause very unusual coloration in hibonite (purple) and grossite (light violet) crystals in an exotic mineral assemblage from Sierra de Comechingones (Argentina). In the hibonite (CaAl12O19) structure vanadium ions, in various valence states (divalent, trivalent, and tetravalent), may be distributed over five crystallographic sites with coordinations corresponding to different polyhedra, namely, three unequal octahedra [M1 (D3d), M4 (C3ν), and M5 (Cs)], one M3 tetrahedron (C3ν), and one unusual fivefold-coordinated trigonal bipyramid M2 (D3h). Possible locations of vanadium ions in grossite (CaAl4O7) are limited to two crystallographically distinct sites (T1 and T2, both C1) in tetrahedral coordination.The combination of single-crystal X-ray diffraction and absorption spectroscopy techniques aided by chemical analyses has yielded details on the nature of the vanadium-induced color in both hibonite and grossite crystals. In hibonite, both M4 face-sharing octahedral and M2 trigonal bipyramid sites of the R-block are partially occupied by V3+. Strongly polarized bands recorded at relatively low energies in optical absorption spectra indicate that V2+ is located at the M4 octahedral site of the hibonite R-block. Chemical analyses coupled with an accurate determination of the electron densities at structural sites in hibonite suggest that the vanadium ions occupy about 10 and 5% of the M4 and M2 sites, respectively. For grossite, polarized optical absorption spectra reveal no indications of V2+; all observed absorption bands can be assigned to V3+ in tetrahedral coordination. Although not evident by the observed electron densities at the T sites of grossite (due to the low-V content), longer bond distances, and a higher degree of polyhedral distortion suggest that V3+ is located at the T2 site.
  •  
6.
  • Biagioni, Cristian, et al. (författare)
  • Bianchiniite, Ba2(Ti4+V3+)(As2O5)2OF, a new diarsenite mineral fromthe Monte Arsiccio mine, Apuan Alps, Tuscany, Italy
  • 2021
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 3, s. 354-363
  • Tidskriftsartikel (refereegranskat)abstract
    • The new mineral bianchiniite, Ba2(Ti4+V3+)(As2O5)2OF, has been discovered in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. It occurs as brown {001} tabular crystals, up to 1 mm across, with a vitreous lustre. It is brittle, with a perfect {001} cleavage. Streak is brownish. In reflected light, bianchiniite is grey, with orange–yellow internal reflections. It is weakly bireflectant, with a very weak anisotropy in shades of grey. Minimum and maximum reflectance data for COM wavelengths [Rmin/Rmax (%), (λ, nm)] are: 5.0/5.8 (470),5.7/6.5 (546), 5.7/7.0 (589) and 5.2/6.3 (650). Electron microprobe analyses gave (wt.% – average of 10 spot analyses): TiO2 10.34, V2O33.77, Fe2O3 3.76,As2O3 44.36, Sb2O3 0.22, SrO 0.45, BaO 34.79, PbO 0.28, F 1.77, sum 99.74, –O=F–0.75, total 98.99. On the basis of 12 anions per formula unit, the empirical formula of bianchiniite is (Ba2.00Sr0.04Pb0.02)Σ2.06(Ti4+1.14V3+0.44Fe3+0.42)Σ2.00[(As3.96Sb0.02)Σ3.98O10](O1.18F0.82)Σ2.00. Bianchiniite is tetragonal, space group I4/mcm, with unit-cell parameters a = 8.7266(4), c = 15.6777(7) Å, V = 1193.91(12) Å3 and Z = 8. Its crystal structure was refined from single-crystal X-ray diffraction data to R1 = 0.0134 on the basis of 555 unique reflections with Fo > 4σ(Fo)and 34 refined parameters. The crystal structure shows columns of corner-sharing [Ti/(V,Fe)]-centred octahedra running along c, connected along a and b through (As2O5) dimers. A {001} layer of Ba-centred [10+2]-coordinated polyhedra is intercalated between (As2O5) dimers. Bianchiniite has structural relations with fresnoite- and melilite-group minerals. The name honours the two mineral collectors Andrea Bianchini (b. 1959) and Mario Bianchini (b. 1962) for their contribution to the knowledge of the mineralogy of pyrite ± baryte ± iron-oxide ore deposits from the Apuan Alps.
  •  
7.
  • Biagioni, Cristian, et al. (författare)
  • Derbylite and graeserite from the Monte Arsiccio mine, Apuan Alps,Tuscany, Italy: occurrence and crystal-chemistry
  • 2020
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 84:5, s. 766-777
  • Tidskriftsartikel (refereegranskat)abstract
    • New occurrences of derbylite, Fex2+Fe3+4–2xTi4+3+xSb3+O13(OH), and graeserite, Fex2+Fe3+4–2xTi4+3+xAs3+O13(OH), have been identified in the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy. Derbylite occurs as prismatic to acicular black crystals in carbonate veins. Iron and Ti are replaced by V (up to 0.29 atoms per formula unit, apfu) and minor Cr (up to 0.04 apfu). Mössbauer spectroscopy confirmed the occurrence of Fe2+ (up to 0.73 apfu), along with Fe3+. The Sb/(As+Sb) atomic ratio ranges between 0.73 and 0.82. Minor Ba and Pb (up to 0.04 apfu) substitute. Derbylite is monoclinic, space group P21/m, with unit-cell parameters a = 7.1690(3), b = 14.3515(7),c = 4.9867(2) Å, β = 104.820(3)° and V = 495.99(4) Å3. The crystal structure was refined to R1 = 0.0352 for 1955 reflections with Fo > 4σ(Fo). Graeserite occurs as prismatic to tabular black crystals, usually twinned, in carbonate veins or as porphyroblasts in schist. Graeserite in the first kind of assemblage is V rich (up to 0.66 apfu), and V poor in the second kind (0.03 apfu). Along with minor Cr (up to 0.06 apfu), this element replaces Fe and Ti. The occurrence of Fe2+ (up to 0.68 apfu) is confirmed by Mössbauer spectroscopy. Arsenic is dominant over Sb and detectable amounts of Ba and Pb have been measured (up to 0.27 apfu). Graeserite is monoclinic, space group C2/m, with unit-cell parameters for two samples: a = 5.0225(7), b = 14.3114(18), c = 7.1743(9) Å,β = 104.878(3)°, V = 498.39(11) Å3; and a = 5.0275(4), b = 14.2668(11), c = 7.1663(5) Å, β = 105.123(4)° and V = 496.21(7) Å3. The crystal structures were refined to R1 = 0.0399 and 0.0237 for 428 and 1081 reflections with Fo > 4σ(Fo), respectively. Derbylite and graeserite are homeotypic. They share the same tunnel structure, characterised by an octahedral framework and cuboctahedral cavities, hosting (As/Sb)O3 groups and (Ba/Pb) atoms.
  •  
8.
  •  
9.
  • Bosi, Ferdinando, et al. (författare)
  • Lowering R3m Symmetry in Mg-Fe-Tourmalines: The Crystal Structures of Triclinic Schorl and Oxy-Dravite, and the Mineral luinaite-(OH) Discredited
  • 2022
  • Ingår i: Minerals. - : MDPI AG. - 2075-163X. ; 12:4, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Discreditation of the monoclinic tourmaline mineral species luinaite-(OH), ideally (Na,▯)(Fe2+,Mg)3Al6(BO3)3Si6O18(OH)4 was approved by the IMA-CNMNC (proposal 21-L) and is described. We analyzed two luinaite-(OH) samples: one from the type locality Cleveland tin mine, Luina, Waratah, Tasmania, Australia, and the other from Blue Mountain Saddle (Bald Hornet Claim), North Bend, King County, Washington, DC, USA. Biaxial (−) crystals representative of the studied samples were spectroscopically (Mössbauer, polarized Fourier transform infrared, optical absorption spectroscopy), chemically (nuclear microprobe analysis and electron microprobe analysis), and structurally characterized (single-crystal X-ray diffraction). Results show the occurrence of a triclinic structure for the studied luinaite-(OH) samples, which differs only in terms of a slight structural distortion from typical trigonal tourmaline structure (the topology of the structure is retained). As a result, following the IMA-CNMNC and tourmaline nomenclature rules, the triclinic luinaite-(OH) from the type locality (Australia) can be considered as the triclinic dimorph of schorl, as its chemical composition corresponds to schorl, and thus it should be referred as schorl-1A. Similarly, the triclinic sample from the USA can be considered as the triclinic dimorph of oxy-dravite, as its chemical composition corresponds to oxy-dravite, and then is referred to as oxy-dravite-1A.
  •  
10.
  • Bosi, Ferdinando, et al. (författare)
  • Mn-bearing purplish-red tourmaline from the Anjanabonoina pegmatite, Madagascar
  • 2021
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 85:2, s. 242-253
  • Tidskriftsartikel (refereegranskat)abstract
    • A gem-quality purplish-red tourmaline sample of alleged liddicoatitic composition from the Anjanabonoina pegmatite, Madagascar, hasbeen fully characterised using a multi-analytical approach to define its crystal-chemical identity. Single-crystal X-ray diffraction, chem-ical and spectroscopic analysis resulted in the formula: X(Na0.41□0.35Ca0.24)Σ1.00Y(Al1.81Li1.00Fe3+0.04Mn3+0.02Mn2+0.12Ti0.004)Σ3.00ZAl6[T(Si5.60B0.40)Σ6.00O18](BO3)3(OH)3W[(OH)0.50F0.13O0.37]Σ1.00, which corresponds to the tourmaline species elbaite having the typical space group R3m and relatively small unit-cell dimensions, a= 15.7935(4) Å, c= 7.0860(2) Å and V= 7.0860(2) Å3.Optical absorption spectroscopy showed that the purplish-red colour is caused by minor amounts of Mn3+(Mn2O3= 0.20 wt.%).Thermal treatment in air up to 750°C strongly intensified the colour of the sample due to the oxidation of all Mn2+ to Mn3+ (Mn2O3 up to 1.21 wt.%). Based on infrared and Raman data, a crystal-chemical model regarding the electrostatic interaction betweenthe X cation and W anion, and involving the Y cations as well, is proposed to explain the absence or rarity of the mineral species ‘liddicoatite’.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy