SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:0161 5505) srt2:(2005-2009)"

Sökning: (L773:0161 5505) > (2005-2009)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Sara, et al. (författare)
  • Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine
  • 2009
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 50:5, s. 781-789
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
  •  
2.
  • Andersson, Håkan, 1944, et al. (författare)
  • Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2--a phase I study.
  • 2009
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505. ; 50:7, s. 1153-60
  • Tidskriftsartikel (refereegranskat)abstract
    • The alpha-emitter (211)At labeled to a monoclonal antibody has proven safe and effective in treating microscopic ovarian cancer in the abdominal cavity of mice. Women in complete clinical remission after second-line chemotherapy for recurrent ovarian carcinoma were enrolled in a phase I study. The aim was to determine the pharmacokinetics for assessing absorbed dose to normal tissues and investigating toxicity. METHODS: Nine patients underwent laparoscopy 2-5 d before the therapy; a peritoneal catheter was inserted, and the abdominal cavity was inspected to exclude the presence of macroscopic tumor growth or major adhesions. (211)At was labeled to MX35 F(ab')(2) using the reagent N-succinimidyl-3-(trimethylstannyl)-benzoate. Patients were infused with (211)At-MX35 F(ab')(2) (22.4-101 MBq/L) in dialysis solution via the peritoneal catheter. gamma-Camera scans were acquired on 3-5 occasions after infusion, and a SPECT scan was acquired at 6 h. Samples of blood, urine, and peritoneal fluid were collected at 1-48 h. Hematology and renal and thyroid function were followed for a median of 23 mo. RESULTS: Pharmacokinetics and dosimetric results were related to the initial activity concentration (IC) of the infused solution. The decay-corrected activity concentration decreased with time in the peritoneal fluid to 50% IC at 24 h, increased in serum to 6% IC at 45 h, and increased in the thyroid to 127% +/- 63% IC at 20 h without blocking and less than 20% IC with blocking. No other organ uptakes could be detected. The cumulative urinary excretion was 40 kBq/(MBq/L) at 24 h. The estimated absorbed dose to the peritoneum was 15.6 +/- 1.0 mGy/(MBq/L), to red bone marrow it was 0.14 +/- 0.04 mGy/(MBq/L), to the urinary bladder wall it was 0.77 +/- 0.19 mGy/(MBq/L), to the unblocked thyroid it was 24.7 +/- 11.1 mGy/(MBq/L), and to the blocked thyroid it was 1.4 +/- 1.6 mGy/(MBq/L) (mean +/- SD). No adverse effects were observed either subjectively or in laboratory parameters. CONCLUSION: This study indicates that by intraperitoneal administration of (211)At-MX35 F(ab')(2) it is possible to achieve therapeutic absorbed doses in microscopic tumor clusters without significant toxicity.
  •  
3.
  •  
4.
  •  
5.
  • Bergström, Mats, et al. (författare)
  • Modeling spheroid growth, PET tracer uptake, and treatment effects of the Hsp90 inhibitor NVP-AUY922
  • 2008
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 49:7, s. 1204-1210
  • Tidskriftsartikel (refereegranskat)abstract
    • For a PET agent to be successful as a biomarker in early clinical trials of new anticancer agents, some conditions need to be fulfilled: the selected tracer should show a response that is related to the antitumoral effects, the quantitative value of this response should be interpretable to the antitumoral action, and the timing of the PET scan should be optimized to action of the drug. These conditions are not necessarily known at the start of a drug-development program and need to be explored. We proposed a translational imaging activity in which experiments in spheroids and later in xenografts are coupled to modeling of growth inhibition and to the related changes in the kinetics of PET tracers and other biomarkers. In addition, we demonstrated how this information can be used for planning clinical trials. Methods: The first part of this concept is illustrated in a spheroid model with BT474 breast cancer cells treated with the heat shock protein 90 (Hsp90) inhibitor NVP-AUY922. The growth-inhibitory effect after a pulse treatment with the drug was measured with digital image analysis to determine effects on volume with high accuracy. The growth-inhibitory effect was described mathematically by a combined E-max and time course model fitted to the data. The model was then used to simulate a once-per-week treatment, in these experiments the uptake of the PET tracers F-18-FDG and 3'-deoxy-3'-F-18-fluorothymidine (F-18-FLT) was determined at different doses and different time points. Results: A drug exposure of 2 h followed by washout of the drug from the culture medium generated growth inhibition that was maximal at the earliest time point of 1 d and decreased exponentially with time during 10-12 d. The uptake of F-18-FDG per viable tumor volume was minimally affected by the treatment, whereas the F-18-FLT uptake decreased in correlation with the growth inhibition. Conclusion: The study suggests a prolonged action of the Hsp90 inhibitor that supports a once-per-week schedule. F-18-FLT is a suitable tracer for the monitoring of effect, and the F-18-FLT PET study might be performed within 3 d after dosing.
  •  
6.
  • Bäck, Tom, 1964, et al. (författare)
  • 211At radioimmunotherapy of subcutaneous human ovarian cancer xenografts: evaluation of relative biologic effectiveness of an alpha-emitter in vivo
  • 2005
  • Ingår i: J Nucl Med. - 0161-5505. ; 46:12, s. 2061-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of alpha-particle emitters in radioimmunotherapy (RIT) appears to be promising. We previously obtained convincing results in the treatment of microscopic intraperitoneal ovarian cancer in nude mice by using the alpha-emitter 211At. This study was performed to evaluate the relative biological effectiveness (RBE) of 211At compared with that of 60Co gamma-irradiation in an RIT model. Our endpoint was growth inhibition (GI) of subcutaneous xenografts. METHODS: GI after irradiation was studied with subcutaneous xenografts of the human ovarian cancer cell line NIH:OVCAR-3 implanted in nude mice. The animals received an intravenous injection of 211At-labeled monoclonal antibody MX35 F(ab')2 at different levels of radioactivity (0.33, 0.65, and 0.90 MBq). Control mice received unlabeled MX35 F(ab')2 only. To calculate the mean absorbed dose to tumor, a separate biodistribution study established the uptake of 211At in tumors and organs at different times after injection. External irradiation of the tumors was performed with 60Co. Tumor growth was monitored, and the normalized tumor volume (NTV) was calculated for each tumor. GI was defined by dividing the NTV values by the fitted NTV curve obtained from the corresponding control mice. To compare the biologic effects of the 2 radiation qualities, the mean value for GI (from day 8 to day 23) was plotted for each tumor as a function of its corresponding absorbed dose. From exponential fits of these curves, the doses required for a GI of 0.37 (D37) were derived, and the RBE of 211At was calculated. RESULTS: The biodistribution study showed the uptake of the immunoconjugate by the tumor (amount of injected radioactivity per gram) to be 14% after 7 h. At 40 h, the ratio of uptake in tumors to uptake in blood reached a maximum value of 6.2. The administered activities of 211At corresponded to doses absorbed by tumors of 1.35, 2.65, and 3.70 Gy. The value (mean+/-SEM) for D37 was 1.59+/-0.08 Gy. Tumor growth after 60Co external irradiation showed a value for D37 of 7.65+/-1.0 Gy. The corresponding RBE of 211At irradiation was 4.8+/-0.7. CONCLUSION: Using a tumor GI model in nude mice, we were able to derive an RBE of alpha-particle RIT with 211At. The RBE was found to be 4.8+/-0.7.
  •  
7.
  • Dewaraja, Y K, et al. (författare)
  • Accurate dosimetry in I-131 radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation
  • 2005
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505. ; 46:5, s. 840-849
  • Tidskriftsartikel (refereegranskat)abstract
    • I-131 radionuclide therapy studies have not shown a strong relationship between tumor absorbed dose and response, possibly due to inaccuracies in activity quantification and dose estimation. The goal of this work was to establish the accuracy of I-131 activity quantification and absorbed dose estimation when patient-specific, 3-dimensional (3D) methods are used for SPECT reconstruction and for absorbed dose calculation. Methods: Clinically realistic voxel-phantom simulations were used in the evaluation of activity quantification and dosimetry. SPECT reconstruction was performed using an ordered-subsets expectation maximization (OSEM) algorithm with compensation for scatter, attenuation, and 3D detector response. Based on the SPECT image and a patient-specific density map derived from CT, 3D dosimetry was performed using a newly implemented Monte Carlo code. Dosimetry was evaluated by comparing mean absorbed dose estimates calculated directly from the defined phantom activity map with those calculated from the SPECT image of the phantom. Finally, the 3D methods were applied to a radioimmunotherapy patient, and the mean tumor absorbed dose from the new calculation was compared with that from conventional dosimetry obtained from conjugate-view imaging. Results: Overall, the accuracy of the SPECT-based absorbed dose estimates in the phantom was > 12% for targets down to 16 mL and up to 35% for the smallest 7-mL tumor. To improve accuracy in the smallest tumor, more OSEM iterations may be needed. The relative SD from multiple realizations was < 3% for all targets except for the smallest tumor. For the patient, the mean tumor absorbed dose estimate from the new Monte Carlo calculation was 7% higher than that from conventional dosimetry. Conclusion: For target sizes down to 16 mL, highly accurate and precise dosimetry can be obtained with 3D methods for SPECT reconstruction and absorbed dose estimation. In the future, these methods can be applied to patients to potentially establish correlations between tumor regression and the absorbed dose statistics from 3D dosimetry.
  •  
8.
  • Elgqvist, Jörgen, 1963, et al. (författare)
  • Alpha-radioimmunotherapy of intraperitoneally growing OVCAR-3 tumors of variable dimensions: Outcome related to measured tumor size and mean absorbed dose.
  • 2006
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - 0161-5505 .- 2159-662X. ; 47:8, s. 1342-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this work was to (a) investigate the efficacy of radioimmunotherapy using 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2 (nonspecific antibody) against differently advanced ovarian cancer in mice; (b) image the tumor growth on the peritoneum; and (c) calculate the specific energy and mean absorbed dose to tumors and critical organs. METHODS: Two experiments with 5-wk-old nude mice (n = 100 + 93), intraperitoneally inoculated with approximately 1 x 10(7) NIH:OVCAR-3 cells, were done. At either 1, 3, 4, 5, or 7 wk after inoculation animals were intraperitoneally treated with approximately 400 kBq 211At-MX35 F(ab')2 (n = 50 + 45), approximately 400 kBq 211At-Rituximab F(ab')2 (n = 25 + 24), or unlabeled Rituximab F(ab')2 (n = 25 + 24). At the time of treatment 29 animals were sacrificed and biopsies were taken for determination of tumor sizes using scanning electron microscopy (SEM). Eight weeks after each treatment the animals were sacrificed and the presence of macro- and microscopic tumors and ascites was determined. The specific energy and mean absorbed dose to tumors were calculated. The activity concentration was measured in critical organs and abdominal fluid. RESULTS: When given treatment 1, 3, 4, 5, or 7 wk after cell inoculation the tumor-free fraction (TFF) was 95%, 68%, 58%, 47%, 26%, and 100%, 80%, 20%, 20%, and 0% when treated with 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2, respectively. The SEM images revealed maximum tumor radius of approximately 30 mum 1 wk after cell inoculation, increasing to approximately 340 mum at 7 wk. Specific energy to cell nuclei varied between 0 and approximately 540 Gy, depending on assumptions regarding activity distribution and tumor size. The mean absorbed dose to thyroid, kidneys, and bone marrow was approximately 35, approximately 4, and approximately 0.3 Gy, respectively. CONCLUSION: Treatment with 211At-MX35 F(ab')2 or 211At-Rituximab F(ab')2 resulted in a TFF of 95%-100% when the tumor radius was < or =30 microm. The TFF was decreased (TFF < or = 20%) for 211At-Rituximab F(ab')2 when the tumor radius exceeded the range of the alpha-particles. The specific antibody gave for these tumor sizes a significantly better TFF, explained by a high mean absorbed dose (>22 Gy) from the activity bound to the tumor surface and probably some contribution from penetrating activity.
  •  
9.
  • Elgqvist, Jörgen, 1963, et al. (författare)
  • Myelotoxicity and RBE of 211At-conjugated monoclonal antibodies compared with 99mTc-conjugated monoclonal antibodies and 60Co irradiation in nude mice
  • 2005
  • Ingår i: J Nucl Med. - 0161-5505. ; 46:3, s. 464-71
  • Tidskriftsartikel (refereegranskat)abstract
    • The rationale of this study was to determine the myelotoxicity in nude mice of the alpha-emitter 211At conjugated to monoclonal antibodies (mAbs) and to compare the effect with an electron emitter, (99m)Tc, and external irradiation from a 60Co source, for estimation of the relative biological effectiveness (RBE). METHODS: 211At and (99m)Tc were conjugated to the IgG1 mAbs MX35 and 88BV59. Nude female BALB/c mice, 8- to 12-wk old, were injected intraperitoneally or intravenously. The biodistribution was determined 3, 6, and 18 h after injection. The bone-to-blood and bone marrow-to-blood activity concentration ratios (BBLR and BMBLR, respectively) were determined for simultaneously injected 211At- and (99m)Tc-mAbs. Bone marrow samples were taken from the femur. For each mouse, the whole-body retention was measured as well as the blood activity by repeated blood samples from the tail vein (0), 1, 3, 6, 12, and 18 h after injection. External-beam irradiation from a 60Co source was also performed at 3 different dose levels. White blood cell (WBC) counts, red blood cell counts, platelet counts, and hemoglobin were determined for each mouse initially and on days 1, 4, 5, 7, 15, 22, and 27 after injection. The calculations of the absorbed dose to the bone marrow were based on the BBLR, BMBLR, the cumulated activities, and the absorbed fractions. The absorbed fractions, phi, for alpha-particles and electrons in the bone marrow were calculated using Monte Carlo simulations based on a bone marrow dosimetry model. RESULTS: The BMBLR was 0.58 +/- 0.06 and 0.56 +/- 0.06 for the 211At- and (99m)Tc-mAbs, respectively. No significant variation in BMBLR with time was found. The absorbed fractions for alpha-particles and electrons in the bone marrow were 0.88 and 0.75, respectively. The mean absorbed fractions of the photons from (99m)Tc were 0.033 and 0.52 for 140 and 18.3 keV, respectively. When different amounts of 211At- and (99m)Tc-mAbs (0.09-1.3 and 250-1,300 MBq, respectively) were administered intraperitoneally or intravenously, corresponding to absorbed doses to the bone marrow of 0.01-0.60 and 0.39-1.92 Gy, respectively, the WBC counts was suppressed by 1%-90% and 23%-89%, respectively. When external-beam irradiation with a 60Co source was performed to absorbed doses of 1.4, 1.9, and 2.4 Gy, the WBC counts was suppressed by 47%-90%. These results indicate a myelotoxic in vivo RBE of 3.4 +/- 0.6 for alpha-particles compared with (99m)Tc and 5.0 +/- 0.9 compared with 60Co irradiation. CONCLUSION: The effect on the WBC counts from bone marrow irradiation with 211At-mAbs indicates an in vivo RBE of 3.4 +/- 0.6 in comparison with (99m)Tc-mAbs. The RBE value compared with external irradiation is 5.0 +/- 0.9.
  •  
10.
  • Elgqvist, Jörgen, 1963, et al. (författare)
  • Therapeutic efficacy and tumor dose estimations in radioimmunotherapy of intraperitoneally growing OVCAR-3 cells in nude mice with (211)At-labeled monoclonal antibody MX35
  • 2005
  • Ingår i: J Nucl Med. - 0161-5505. ; 46:11, s. 1907-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate the therapeutic efficacy of-and to estimate the absorbed dose to-tumor cells from radioimmunotherapy (RIT) in an ovarian cancer model using the alpha-particle-emitting nuclide (211)At labeled to monoclonal antibody (mAb) MX35. Previous studies on mAb MOv18 did not allow for dosimetry because of antigen shedding in vitro. METHODS: Five-week-old female nude BALB/c nu/nu mice were inoculated intraperitoneally with 1 x 10(7) cells of the human tumor cell line OVCAR-3. Three weeks later, the animals were given approximately 400, 800, or 1,200 kBq of (211)At-labeled mAb MX35 intraperitoneally. As controls, one group of animals was injected with unlabeled mAb and another group was injected with phosphate-buffered saline (PBS). Another group was given approximately 400 kBq of (211)At labeled to the previously investigated mAb MOv18 for efficacy comparison. Two months after treatment, the animals were sacrificed and the presence of macroscopic and microscopic tumors, as well as ascites, was determined. The absorbed dose to tumor cells on the peritoneal surface was estimated in terms of the sum of a specific and a nonspecific contribution. The specific contribution, arising from mAbs binding to the antigenic sites on the cell membrane, was calculated using a dynamic compartment model developed in-house and Monte Carlo software. The model used as input values the number of mAbs injected into the abdominal cavity, N(mAb), the specific activity, A(sp), the association rate constant, k(on), and the maximal number of mAbs bound per cell, B(max)-all determined by in vitro experiments. This specific component of the absorbed dose was calculated for assumed cell cluster sizes with radii of 25, 50, and 100 microm. The nonspecific contribution to the absorbed dose was derived from unbound mAbs freely circulating in the abdominal cavity, also using the Monte Carlo software. RESULTS: In the control groups given unlabeled MX35 or PBS, all 18 animals had ascites, 6 of 9 animals in each group had macroscopic tumors, and all animals had microscopic growth. In the 3 groups given different amounts of (211)At-MX35, only 3 of 25 animals developed ascites. None of these animals had any sign of macroscopic tumors, but 8 had microscopic growth. In the group given (211)At-MOv18, no animals had ascites or macroscopic tumors, but 3 of 10 animals had microscopic tumors. After injecting 400 kBq of (211)At-MX35, the absorbed dose due to specific binding, for a cell cluster with a radius of 50 microm, ranged from 413 to 223 Gy between 0- and 45-microm distance from the cluster center, assuming a homogeneous distribution of (211)At-MX35 in the cluster. The contribution from unbound (211)At-MX35 and (211)At-MX35 only distributed on the cluster surface, for this cluster size, ranged from 7 to 14 Gy and from 29 to 94 Gy, between 0- and 45-microm distance from the cluster center, respectively. The calculated total absorbed doses are in a clinically relevant range and were effective as verified in the nude mice with subclinical intraperitoneal growth of OVCAR-3 cells. CONCLUSION: (211)At-MX35 injected intraperitoneally exhibits a high efficacy when treating micrometastatic growth of the ovarian cancer cell line OVCAR-3 on the peritoneum of nude mice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40
Typ av publikation
tidskriftsartikel (35)
konferensbidrag (5)
Typ av innehåll
refereegranskat (33)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Tolmachev, Vladimir (7)
Lindegren, Sture, 19 ... (7)
Hultborn, Ragnar, 19 ... (6)
Bäck, Tom, 1964 (6)
Elgqvist, Jörgen, 19 ... (6)
Jacobsson, Lars, 194 ... (6)
visa fler...
Halldin, C (5)
Orlova, Anna (5)
Palm, Stig, 1964 (5)
Strand, Sven-Erik (4)
Farde, L (4)
Andersson, Håkan, 19 ... (4)
Warnhammar Finnborg, ... (3)
Jensen, H. (3)
Maguire Jr., Gerald ... (3)
Forssell-Aronsson, E ... (3)
Noz, Marilyn E. (3)
Jensen, Holger (3)
Karlsson, Börje (3)
Bernhardt, Peter, 19 ... (3)
Takahashi, H. (2)
Suurküla, Madis (2)
Suzuki, K. (2)
Ito, H. (2)
Varrone, A (2)
Ljungberg, Michael (2)
Ståhl, Stefan (2)
Rosik, Daniel (2)
Wållberg, Helena (2)
Widström, Charles (2)
Långström, Bengt (2)
Kramer, Elissa L. (2)
Höglund, Peter (2)
Lundh, Charlotta, 19 ... (2)
Nakao, R (2)
Nilsson, Mikael, 195 ... (2)
Bergström, Mats (2)
Arakawa, R (2)
Seki, C (2)
Takano, H (2)
Suhara, T (2)
Edenbrandt, Lars, 19 ... (2)
Claesson, Ingela, 19 ... (2)
Uusijärvi, Helena, 1 ... (2)
Maecke, Helmut R (2)
Nilsson, Fredrik Y. (2)
Moy, Linda (2)
Odano, I (2)
Sadik, May, 1970 (2)
Ponzo, Fabio (2)
visa färre...
Lärosäte
Göteborgs universitet (14)
Uppsala universitet (9)
Lunds universitet (9)
Karolinska Institutet (9)
Kungliga Tekniska Högskolan (6)
Chalmers tekniska högskola (1)
Språk
Engelska (40)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy