SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:0303 7207) srt2:(2010-2014) srt2:(2010)"

Sökning: (L773:0303 7207) srt2:(2010-2014) > (2010)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balhuizen, Alexander, et al. (författare)
  • Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice.
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 320, s. 16-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the newly discovered estrogen receptor GPR30 in islet physiology and pathophysiology is unclear. We examined GPR30 expression in relation to hormone secretion and possible anti-apoptotic effects in isolated mouse islets using the synthetic GPR30 ligand G-1. The mRNA and protein expression of GPR30 was analyzed by qPCR, Western blot and confocal microscopy. Hormone secretion and cAMP content were determined with RIA and apoptosis in islet cells with the Annexin-V method. GPR30 mRNA and protein expression was markedly higher in islets from females compared to male. This gender difference was not found for the genomic estrogen receptors ERalpha and ERbeta, the ERalpha expression being 10-fold higher than ERbeta in both genders. Confocal microscopy revealed abounden GPR30 expression in insulin, glucagon and somatostatin cells. Dose-response studies of G-1 vs 17beta-estradiol in isolated islets at 1 or 12mM glucose showed an almost identical pattern in that both compounds increased insulin and inhibited glucagon and somatostatin secretion. ICI-182,780 and EM-652, potent antagonists of the 17beta-estradiol receptors (ERalpha and ERbeta) did not influence the amplifying effect of G-1 or 17beta-estradiol on cAMP content or insulin secretion from isolated islets. Cytokine-induced (IL-1beta+TNFalpha+INFgamma) apoptosis in islets, cultured for 24h at 5mM glucose, was almost abolished by G-1 or 17beta-estradiol treatment. Addition of ICI-182,780 or EM-652 did not affect this beneficial effect of G-1 or 17beta-estradiol. Taken together, our findings show that GPR30 is expressed in most islet endocrine cells. The synthetic GPR30 ligand G-1 mimics the non-genomic effects of 17beta-estradiol on islet hormone secretion, cAMP content in islets and its anti-apoptotic effects. G-1 or analogs thereof might be new potential candidates in the therapeutic strategy for type 2 diabetes in women.
  •  
2.
  • Cheon, Hwanju, et al. (författare)
  • Role of JNK activation in pancreatic β-cell death by streptozotocin
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - 0303-7207. ; 321:2, s. 131-137
  • Tidskriftsartikel (refereegranskat)abstract
    • c-Jun N-terminal kinase (JNK) is activated by cellular stress and plays critical roles in diverse types of cell death. However, role of JNK in β-cell injury is obscure. We investigated the role for JNK in streptozotocin (STZ)-induced β-cell death. STZ induced JNK activation in insulinoma or islet cells. JNK inhibitors attenuated insulinoma or islet cell death by STZ. STZ-induced JNK activation was decreased by PARP inhibitors, suggesting that JNK activation is downstream of PARP-1. Phosphatase inhibitors induced activation of JNK and abrogated the suppression of STZ-induced JNK activation by PARP inhibitors, suggesting that the inhibition of phosphatases is involved in the activation of JNK by STZ. STZ induced production of reactive oxygen species (ROS) as potential inhibitors of phosphatases, which was suppressed by PARP inhibitors. PARP-1 siRNA attenuated insulinoma cell death and JNK activation after STZ treatment, which was reversed by MKP (MAP kinase phosphatase)-1 siRNA. These results suggest that JNK is activated by STZ downstream of PARP-1 through inactivation of phosphatases such as MKP, which plays important roles in STZ-induced β-cell death.
  •  
3.
  •  
4.
  • Fagman, Henrik, 1975, et al. (författare)
  • Morphogenesis of the thyroid gland.
  • 2010
  • Ingår i: Molecular and cellular endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 323:1, s. 35-54
  • Forskningsöversikt (refereegranskat)abstract
    • Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
  •  
5.
  • Feng, Yi, et al. (författare)
  • Spatiotemporal expression of androgen receptors in the female rat brain during the oestrous cycle and the impact of exogenous androgen administration: a comparison with gonadally intact males.
  • 2010
  • Ingår i: Molecular and cellular endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 321:2, s. 161-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the regulation and cellular distribution of androgen receptors (ARs) in female rodent brains at various stages of the oestrous cycle. This information is critical for further studies of androgen signalling in the regulation of brain function under physiological and pathophysiological conditions. In this report, we show that the distribution of AR immunoreactivity in the female rat brain is consistent with reported AR mRNA hybridisation signals in the male brain, except for the dentate gyrus of the hippocampus. Immunohistochemical and Western blot analyses performed herein revealed that the onset of region-specific changes in AR proteins was strongly correlated with circulating and ovarian levels of estradiol and testosterone across the oestrous cycle. During the metestrus and diestrus stages, however, the highest levels of AR expression were abolished by chronic dihydrotestosterone (DHT) treatment. This demonstrates that fluctuations in endogenous androgens are required for the regulation of AR expression in the female rat brain. Colocalisation studies revealed that: (1) anatomical variations in AR protein localisation existed between female and male brains, (2) AR immunoreactivity was both neuronal and non-neuronal, and (3) AR protein expression was lower in female rat brains at all stages of the oestrous cycle compared to age-matched males. Our results indicate the presence of regional sex differences in AR expression and changes in the proportion of AR between different subcellular compartments. Furthermore, DHT was found to down-regulate the level of AR in the subcellular compartment in females in a region-specific manner. As a whole, the present study provides the first step toward understanding the dynamics of AR expression and regulation in the brain during normal physiological conditions and for differences in neuronal androgen effects based on sex.
  •  
6.
  • Friberg, P. Anders, 1976, et al. (författare)
  • Transcriptional effects of progesterone receptor antagonist in rat granulosa cells.
  • 2010
  • Ingår i: Molecular and cellular endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 315:1-2, s. 121-130
  • Tidskriftsartikel (refereegranskat)abstract
    • Progesterone, acting via the nuclear progesterone receptor (PGR), reduces apoptosis in periovulatory granulosa cells, and is a likely mediator of the anti-atretic actions of LH. The underlying mechanisms, however, have not been clearly defined. In this study, we sought to identify progesterone-mediated transcriptional changes involved in apoptosis regulation. Granulosa cells from immature, gonadotropin-primed female rats were treated in vitro with 100nM of the PGR antagonist Org 31710. Transcriptional effects were analyzed after 5 and 22h of incubation using microarrays, and the expression of 85 genes was subsequently measured by quantitative PCR. Follow-up experiments focused on genes related to the functional group "apoptosis". We have identified novel, early gene targets of PGR that may be involved in the control of apoptosis and other biologically significant functions in periovulatory granulosa cells. This study expands our knowledge of events that occur during the processes of ovulation and luteinization.
  •  
7.
  • Fridmanis, Davids, et al. (författare)
  • Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R)
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 321:2, s. 175-183
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.
  •  
8.
  • Holm, Anders, et al. (författare)
  • Down-regulation of endothelial cell estrogen receptor expression by the inflammation promoter LPS.
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 1872-8057 .- 0303-7207. ; 319, s. 8-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothelial cells express both estrogen receptor (ER) alpha and beta. The objective of this study was to investigate if and how mediators of inflammation regulate endothelial cell ERalpha and ERbeta expression. ERalpha and ERbeta transcript and protein expression were determined by real-time quantitative PCR and Western blotting, respectively, in endothelial cell line bEnd.3 cells stimulated with the inflammation promoter lipopolysaccharide (E. coli LPS). Stimulation with LPS (500ng/ml and 10mug/ml) for 4 days reduced both ERalpha and ERbeta mRNA levels. The glucocorticoid dexamethasone (1muM) had no effect on LPS-induced attenuation of ERalpha and beta transcript expression. Full-length 66-67kDa ERalpha protein was unaffected by 4 days stimulation with LPS, while the 46-kDa ERalpha isoform was reduced by about 20%. ERbeta protein was reduced by about 40% by LPS at 4 days. Treatment with 17beta-estradiol (E(2), 100nM) for 4 days increased ERbeta mRNA by about 8 times but had no effect on ERalpha mRNA level. The E(2)-induced increase in ERbeta transcript was not associated with increased ERbeta protein. E(2) increased ERbeta mRNA expression also in the presence of LPS, suggesting that inflammation-induced impairment of ERbeta signalling is rescued by estrogen.
  •  
9.
  • Jagarlamudi, Krishna, et al. (författare)
  • Genetically modified mouse models for premature ovarian failure (POF)
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 315:1-2, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Premature ovarian failure (POF) is a complex disorder that affects approximately 1% of women. POF is characterized by the depletion of functional ovarian follicles before the age of 40 years, and clinically, patients may present with primary amenorrhea or secondary amenorrhea. Although some genes have been hypothesized to be candidates responsible for POF, the etiology of most of the cases is idiopathic, with the underlying causes still unidentified because of the heterogeneity of the disease. In this review, we consider some mutant mouse models that exhibit phenotypes which are comparable to human POF, and we suggest that the use of these mouse models may help us to gain a better understanding of the molecular mechanisms underlying POF in humans.
  •  
10.
  • Rossbach, Uwe, et al. (författare)
  • Acute 19-nortestosterone transiently suppresses hippocampal MAPK pathway and the phosphorylation of the NMDA receptor
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - Ireland : Elsevier. - 0303-7207 .- 1872-8057. ; 314:1, s. 143-149
  • Tidskriftsartikel (refereegranskat)abstract
    • High doses of anabolic androgenic steroid are associated with changes in personality, e.g. increased aggression and irritability, behavioural changes that may be linked to structural changes in the hippocampus. In this in vivo study we demonstrate acute effects of a single injection of 19-nortestosterone on proteins that play a major role in molecular plasticity at synaptic connections. The steroid rapidly and transiently decreased total and phosphorylated NMDA receptor GluN2B subunit levels and phosphorylated extracellular signal-regulated kinase 1 in rat hippocampal synaptoneurosomes. Pretreatment with the androgen receptor antagonist flutamide prevented these effects suggesting an androgen receptor mediated mode of action. However, flutamide alone stimulated the phosphorylation of both extracellular signal-regulated kinase 1 and 2. EphrinB2 and phosphorylated translation initiation factor 4E, two proteins that act on synaptic plasticity through NMDA receptor and/or mitogen-activated protein kinase pathways, were not affected by any of the treatment regimens. This study demonstrates rapid in vivo effects of an anabolic androgenic steroid on two key elements in hippocampal synaptic plasticity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy