SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:0370 1573 OR L773:1873 6270) srt2:(2020-2023)"

Sökning: (L773:0370 1573 OR L773:1873 6270) > (2020-2023)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abele, H., et al. (författare)
  • Particle physics at the European Spallation Source
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Forskningsöversikt (refereegranskat)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
2.
  • Anchordoqui, Luis A., et al. (författare)
  • The Forward Physics Facility : Sites, experiments, and physics potential
  • 2022
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 968, s. 1-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The Forward Physics Facility (FPF) is a proposal to create a cavern with the space and infrastructure to support a suite of far-forward experiments at the Large Hadron Collider during the High Luminosity era. Located along the beam collision axis and shielded from the interaction point by at least 100 m of concrete and rock, the FPF will house experiments that will detect particles outside the acceptance of the existing large LHC experiments and will observe rare and exotic processes in an extremely low-background environment. In this work, we summarize the current status of plans for the FPF, including recent progress in civil engineering in identifying promising sites for the FPF and the experiments currently envisioned to realize the FPF's physics potential. We then review the many Standard Model and new physics topics that will be advanced by the FPF, including searches for long-lived particles, probes of dark matter and dark sectors, high-statistics studies of TeV neutrinos of all three flavors, aspects of perturbative and non-perturbative QCD, and high-energy astroparticle physics.
  •  
3.
  • Aoyama, T., et al. (författare)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • Ingår i: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Forskningsöversikt (refereegranskat)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
4.
  • Bissi, Agnese, et al. (författare)
  • Selected topics in analytic conformal bootstrap : A guided journey
  • 2022
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 991, s. 1-89
  • Forskningsöversikt (refereegranskat)abstract
    • This review aims to offer a pedagogical introduction to the analytic conformal bootstrap program via a journey through selected topics. We review analytic methods which include the large spin perturbation theory, Mellin space methods and the Lorentzian inversion formula. These techniques are applied to a variety of topics ranging from large -N theories, to the epsilon expansion and holographic superconformal correlators, and are demonstrated in a large number of explicit examples.
  •  
5.
  • Camps-Valls, Gustau, et al. (författare)
  • Discovering causal relations and equations from data
  • 2023
  • Ingår i: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 1044, s. 1-68
  • Forskningsöversikt (refereegranskat)abstract
    • Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws, and principles that are invariant, robust, and causal has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventions on the system under study. With the advent of big data and data-driven methods, the fields of causal and equation discovery have developed and accelerated progress in computer science, physics, statistics, philosophy, and many applied fields. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for data-driven causal and equation discovery, point out connections, and showcase comprehensive case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is revolutionised with the efficient exploitation of observational data and simulations, modern machine learning algorithms and the combination with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
  •  
6.
  • Fedotov, A., et al. (författare)
  • Advances in QED with intense background fields
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1010, s. 1-138
  • Forskningsöversikt (refereegranskat)abstract
    • Upcoming and planned experiments combining increasingly intense lasers and energetic particle beams will access new regimes of nonlinear, relativistic, quantum effects. This improved experimental capability has driven substantial progress in QED in intense background fields. We review here the advances made during the last decade, with a focus on theory and phenomenology. As ever higher intensities are reached, it becomes necessary to consider processes at higher orders in both the number of scattered particles and the number of loops, and to account for non-perturbative physics (e.g. the Schwinger effect), with extreme intensities requiring resummation of the loop expansion. In addition to increased intensity, experiments will reach higher accuracy, and these improvements are being matched by developments in theory such as in approximation frameworks, the description of finite-size effects, and the range of physical phenomena analysed. Topics on which there has been substantial progress include: radiation reaction, spin and polarisation, nonlinear quantum vacuum effects and connections to other fields including physics beyond the Standard Model.
  •  
7.
  • Jiang, Xiantao, et al. (författare)
  • Two-dimensional MXenes : From morphological to optical, electric, and magnetic properties and applications
  • 2020
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 848
  • Forskningsöversikt (refereegranskat)abstract
    • MXenes, generally referring to two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides, have received tremendous attention since the first report in 2011. Extensive experimental and theoretical studies have unveiled their enormous potential for applications in optoelectronics, photonics, catalysis, and many other areas. Because of their intriguing mechanical and electronic properties, together with the richness of elemental composition and chemical decoration, MXenes are poised to provide a new 2D nanoplatform for advanced optoelectronics. This comprehensive review, intended for a broad multidisciplinary readership, highlights the state-of-the-art progress on MXene theory, materials synthesis techniques, morphology modifications, opto-electromagnetic properties, and their applications. The efforts exploring the device performance limits, steric configurations, physical mechanisms, and novel application boundaries are comprehensively discussed. The review is concluded with a compelling perspective, outlook as well as non-trivial challenges in future investigation of MXene-based nano-optoelectronics.
  •  
8.
  • Mafra, Carlos R., et al. (författare)
  • Tree-level amplitudes from the pure spinor superstring
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1020, s. 1-162
  • Forskningsöversikt (refereegranskat)abstract
    • We give a comprehensive review of recent developments on using the pure spinor formalism to compute massless superstring scattering amplitudes at tree level. The main results of the pure spinor computations are placed into the context of related topics including the color-kinematics duality in field theory and the mathematical structure of  alphaPRIME-corrections.
  •  
9.
  • Marino, Raffaele, et al. (författare)
  • Scaling laws for the energy transfer in space plasma turbulence
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1006, s. 1-144
  • Forskningsöversikt (refereegranskat)abstract
    • One characteristic trait of space plasmas is the multi-scale dynamics resulting from non-linear transfers and conversions of various forms of energy. Routinely evidenced in a range from the large-scale solar structures down to the characteristic scales of ions and electrons, turbulence is a major cross-scale energy transfer mechanism in space plasmas. At intermediate scales, the fate of the energy in the outer space is mainly determined by the interplay of turbulent motions and propagating waves. More mechanisms are advocated to account for the transfer and conversion of energy, including magnetic reconnection, emission of radiation and particle energization, all contributing to make the dynamical state of solar and heliospheric plasmas difficult to predict. The characterization of the energy transfer in space plasmas benefited from numerous robotic missions. However, together with breakthrough technologies, novel theoretical developments and methodologies for the analysis of data played a crucial role in advancing our understanding of how energy is transferred across the scales in the space. In recent decades, several scaling laws were obtained providing effective ways to model the energy flux in turbulent plasmas. Under certain assumptions, these relations enabled to utilize reduced knowledge (in terms of degrees of freedom) of the fields from spacecraft observations to obtain direct estimates of the energy transfer rates (and not only) in the interplanetary space, also in the proximity of the Sun and planets. Starting from the first third-order exact law for the magnetohydrodynamics by Politano and Pouquet (1998), we present a detailed review of the main scaling laws for the energy transfer in plasma turbulence and their application, presenting theoretical, numerical and observational milestones of what has become one of the main approaches for the characterization of turbulent dynamics and energetics in space plasmas.
  •  
10.
  • Sundqvist, Bertil (författare)
  • Carbon under pressure
  • 2021
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 909, s. 1-73
  • Forskningsöversikt (refereegranskat)abstract
    • Carbon is an element with extremely versatile bonding properties and theoretical calculations have suggested the possible existence of several hundred structural allotropes. Many, or even most, of these are predicted to be formed under conditions of high pressure and temperature. On the other hand, experimental high pressure studies have identified surprisingly few structural allotropes. In this paper, physical properties and structural transformations observed in high pressure experiments, at and above room temperature, are reviewed for a large number of solid carbon allotropes. The materials discussed include bulk carbon such as graphite, diamond, glass-like and amorphous carbon, two-dimensional graphene, and molecular carbon in the form of one-dimensional carbon nanotubes and zero-dimensional fullerenes. Results from recent studies on twisted graphene, graphdiyne, graphyne, carbon dots and other interesting all-carbon allotropes are also briefly described. Observed similarities and differences between the high pressure behavior and evolution of carbon materials are discussed. In spite of the enormous volume of experimental work carried out on these materials, few new structural allotropes have been identified and most carbon materials studied convert into diamond at sufficiently high temperature and pressure. Further theoretical work thus seems to be needed to elucidate possible transformation processes and transition paths for the many undiscovered allotropes proposed from calculations. In particular, it is recommended that, for every new allotrope predicted by theory, suitable precursors and transformation conditions should also be investigated. Efficient creation of new structural allotropes or functional materials based on pure carbon by high pressure methods should ideally start from designed, preassembled precursor structures or composites for which transition paths can be theoretically predicted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy