SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:1047 3211 OR L773:1460 2199) srt2:(2010-2014)"

Sökning: (L773:1047 3211 OR L773:1460 2199) > (2010-2014)

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergersen, L H, et al. (författare)
  • Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes.
  • 2012
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 22:7, s. 1690-1697
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutamate and the N-methyl-D-aspartate receptor ligand D-serine are putative gliotransmitters. Here, we show by immunogold cytochemistry of the adult hippocampus that glutamate and D-serine accumulate in synaptic-like microvesicles (SLMVs) in the perisynaptic processes of astrocytes. The estimated concentration of fixed glutamate in the astrocytic SLMVs is comparable to that in synaptic vesicles of excitatory nerve terminals (≈ 45 and ≈ 55 mM, respectively), whereas the D-serine level is about 6 mM. The vesicles are organized in small spaced clusters located near the astrocytic plasma membrane. Endoplasmic reticulum is regularly found in close vicinity to SLMVs, suggesting that astrocytes contain functional nanodomains, where a local Ca(2+) increase can trigger release of glutamate and/or D-serine.
  •  
2.
  • Burzynska, A Z, et al. (författare)
  • Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance
  • 2011
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 21:10, s. 2261-2271
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated how the microstructure of relevant white matter connections is associated with cortical responsivity and working memory (WM) performance by collecting diffusion tensor imaging and verbal WM functional magnetic resonance imaging data from 29 young adults. We measured cortical responsivity within the frontoparietal WM network as the difference in blood oxygenation level-dependent (BOLD) signal between 3-back and 1-back conditions. Fractional anisotropy served as an index of the integrity of the superior longitudinal fasciculi (SLF), which connect frontal and posterior regions. We found that SLF integrity is associated with better 3-back performance and greater task-related BOLD responsivity. In addition, BOLD responsivity in right premotor cortex reliably mediated the effects of SLF integrity on 3-back performance but did not uniquely predict 3-back performance after controlling for individual differences in SLF integrity. Our results suggest that task-related adjustments of local gray matter processing are conditioned by the properties of anatomical connections between relevant cortical regions. We suggest that the microarchitecture of white matter tracts influences the speed of signal transduction along axons. This in turn may affect signal summation at neural dendrites, action potential firing, and the resulting BOLD signal change and responsivity.
  •  
3.
  •  
4.
  •  
5.
  • Denker, M, et al. (författare)
  • The local field potential reflects surplus spike synchrony
  • 2011
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 21:12, s. 2681-2695
  • Tidskriftsartikel (refereegranskat)abstract
    •  While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes. This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations but contribute only a fraction of their spikes to temporally precise spike configurations. This finding provides direct evidence for the hypothesized relation that precise spike synchrony constitutes a major temporally and spatially organized component of the LFP.
  •  
6.
  •  
7.
  • Fjell, Anders M, et al. (författare)
  • Brain Atrophy in Healthy Aging Is Related to CSF Levels of A{beta}1-42.
  • 2010
  • Ingår i: Cerebral cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 20:9, s. 2069-2079
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced levels of beta-amyloid(1-42) (Abeta1-42) and increased levels of tau proteins in the cerebrospinal fluid (CSF) are found in Alzheimer's disease (AD), likely reflecting Abeta deposition in plaques and neuronal and axonal damage. It is not known whether these biomarkers are associated with brain atrophy also in healthy aging. We tested the relationship between CSF levels of Abeta1-42 and tau (total tau and tau phosphorylated at threonine 181) proteins and 1-year brain atrophy in 71 cognitively normal elderly individuals. Results showed that under a certain threshold value, levels of Abeta1-42 correlated highly with 1-year change in a wide range of brain areas. The strongest relationships were not found in the regions most vulnerable early in AD. Above the threshold level, Abeta1-42 was not related to brain changes, but significant volume reductions as well as ventricular expansion were still seen. It is concluded that Abeta1-42 correlates with brain atrophy and ventricular expansion in a subgroup of cognitively normal elderly individuals but that reductions independent of CSF levels of Abeta1-42 is common. Further research and follow-up examinations over several years are needed to test whether degenerative pathology will eventually develop in the group of cognitively normal elderly individuals with low levels of Abeta1-42.
  •  
8.
  •  
9.
  •  
10.
  • Gaughwin, Philip, et al. (författare)
  • Stage-Specific Modulation of Cortical Neuronal Development by Mmu-miR-134
  • 2011
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 21:8, s. 1857-1869
  • Tidskriftsartikel (refereegranskat)abstract
    • To realize the potential of microRNAs (miRs) as fine-tuning regulators of embryonic neuronal differentiation, it is critical to define their developmental function. Mmu-miR-134 (miR-134) is a powerful inducer of pluripotent stem cell differentiation. However, its functional role during embryonic, neuronal development is unknown. We demonstrate that mature, miR-134 transcript levels elevate during embryonic, neuronal differentiation in vitro and in vivo. To define the developmental targets and function of miR-134, we identified multiple brain-expressed targets including the neural progenitor cell-enriched, bone morphogenetic protein (BMP) antagonist Chordin-like 1 (Chrdl-1) and the postmitotic, neuron-specific, microtubule-associated protein, Doublecortin (Dcx). We show that, through interaction with Dcx and/or Chrdl-1, miR-134 has stage-specific effects on cortical progenitors, migratory neurons, and differentiated neurons. In neural progenitors, miR-134 promotes cell proliferation and counteracts Chrdl-1-induced apoptosis and Dcx-induced differentiation in vitro. In neurons, miR-134 reduces cell migration in vitro and in vivo in a Dcx-dependent manner. In differentiating neurons, miR-134 modulates process outgrowth in response to exogenous BMP-4 in a noggin-reversible manner. Taken together, we present Dcx and Chrdl-1 as new regulatory targets of miR-134 during embryonic, mouse, cortical, and neuronal differentiation and show a novel and previously undiscovered role for miR-134 in the stage-specific modulation of cortical development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy