SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:1367 2630) srt2:(2020-2024)"

Sökning: (L773:1367 2630) > (2020-2024)

  • Resultat 1-10 av 71
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Konopik, Michael, et al. (författare)
  • Solving the subset sum problem with a nonideal biological computer
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider the solution of the subset sum problem based on a parallel computer consisting of self-propelled biological agents moving in a nanostructured network that encodes the computing task in its geometry. We develop an approximate analytical method to analyze the effects of small errors in the nonideal junctions composing the computing network by using a Gaussian confidence interval approximation of the multinomial distribution. We concretely evaluate the probability distribution for error-induced paths and determine the minimal number of agents required to obtain a proper solution. We finally validate our theoretical results with exact numerical simulations of the subset sum problem for different set sizes and error probabilities, and discuss the scalability of the nonideal problem using realistic experimental error probabilities.
  •  
2.
  • Boeyens, Julia, et al. (författare)
  • Probe thermometry with continuous measurements
  • 2023
  • Ingår i: New Journal of Physics. - 1367-2630. ; 25:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Temperature estimation plays a vital role across natural sciences. A standard approach is provided by probe thermometry, where a probe is brought into contact with the sample and examined after a certain amount of time has passed. In situations where, for example, preparation of the probe is non-trivial or total measurement time of the experiment is the main resource that must be optimized, continuously monitoring the probe may be preferred. Here, we consider a minimal model, where the probe is provided by a two-level system coupled to a thermal reservoir. Monitoring thermally activated transitions enables real-time estimation of temperature with increasing accuracy over time. Within this framework we comprehensively investigate thermometry in both bosonic and fermionic environments employing a Bayesian approach. Furthermore, we explore adaptive strategies and find a significant improvement on the precision. Additionally, we examine the impact of noise and find that adaptive strategies may suffer more than non-adaptive ones for short observation times. While our main focus is on thermometry, our results are easily extended to the estimation of other environmental parameters, such as chemical potentials and transition rates.
  •  
3.
  • Dorsch, Sven, et al. (författare)
  • Characterization of electrostatically defined bottom-heated InAs nanowire quantum dot systems
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Conversion of temperature gradients to charge currents in quantum dot systems enables probing various concepts from highly efficient energy harvesting and fundamental thermodynamics to spectroscopic possibilities complementary to conventional bias device characterization. In this work, we present a proof-of-concept study of a device architecture where bottom-gates are capacitively coupled to an InAs nanowire and double function as local joule heaters. The device design combines the ability to heat locally at different locations on the device with the electrostatic definition of various quantum dot and barrier configurations. We demonstrate the versatility of this combined gating- and heating approach by studying, as a function of the heater location and bias, the Seebeck effect across the barrier-free nanowire, fit thermocurrents through quantum dots for thermometry and detect the phonon energy using a serial double quantum dot. The results indicate symmetric heating effects when the device is heated with different gates and we present detection schemes for the electronic and phononic heat transfer contribution across the nanowire. Based on this proof-of-principle work, we propose a variety of future experiments.
  •  
4.
  • Dzhigaev, D, et al. (författare)
  • Three-dimensional coherent x-ray diffraction imaging of ferroelastic domains in single CsPbBr3 perovskite nanoparticles
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites attract significant interest due to their remarkable performance in optoelectronic devices. However, the gap in understanding the relationship between their nanoscale structure and properties limits their application towards novel devices. In this work, twinned ferroelastic domains in single 500 nm CsPbBr3 particles are studied with 3D Bragg coherent x-ray diffraction imaging. A preferential double-domain structure is revealed in four identical particles, with one domain oriented along the [110] and the other along the [002] direction. The particles exhibit similar scattering volume ratios of 0.12 0.026 between twin phases, suggesting the possibility of a deterministic formation process. The domains exhibit a difference in lattice tilt of 0.59 degrees, in excellent agreement with calculations of the lattice mismatch at the (112) twin boundary. These results provide important insights both for the fundamental understanding of ferroelastic nanoscale materials and for the performance improvement of perovskite-based devices. Moreover, this work paves the way towards real-time imaging of the domain dynamics in ferroic systems.
  •  
5.
  • Francesco Diotallevi, Giovanni, et al. (författare)
  • Steady-state entanglement production in a quantum thermal machine with continuous feedback control
  • 2024
  • Ingår i: New Journal of Physics. - 1367-2630. ; 26:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum thermal machines can generate steady-state entanglement by harvesting spontaneous interactions with local environments. However, using minimal resources and control, the entanglement is typically weak. Here, we study entanglement generation in a two-qubit quantum thermal machine in the presence of a continuous feedback protocol. Each qubit is measured continuously and the outcomes are used for real-time feedback to control the local system-environment interactions. We show that there exists an ideal operation regime where the quality of entanglement is significantly improved, to the extent that it can violate standard Bell inequalities and uphold quantum teleportation. In agreement with (Khandelwal et al 2020 New J. Phys. 22 073039), we also find, for ideal operation, that the heat current across the system is proportional to the entanglement concurrence. Finally, we investigate the robustness of entanglement production when the machine operates away from the ideal conditions.
  •  
6.
  • Gower, Artur, et al. (författare)
  • Effective waves for random three-dimensional particulate materials
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:6
  • Tidskriftsartikel (refereegranskat)abstract
    • How do you take a reliable measurement of a material whose microstructure is random? When using wave scattering, the answer is often to take an ensemble average (average over time or space). By ensemble averaging we can calculate the average scattered wave and the effective wavenumber. To date, the literature has focused on calculating the effective wavenumber for a plate filled with particles. One clear unanswered question was how to extend this approach to a material of any geometry and for any source. For example, does the effective wavenumber depend on only the microstructure, or also on the material geometry? In this work, we demonstrate that the effective wavenumbers depend on only microstructure, though beyond the long wavelength limit there are multiple effective wavenumbers for one fixed incident frequency. We show how to calculate the average wave scattered from a random particulate material of any shape, and for broad frequency ranges. As an example, we show how to calculate the average wave scattered from a sphere filled with particles.
  •  
7.
  • Gustafsson, Mats, et al. (författare)
  • Upper bounds on absorption and scattering
  • 2020
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 22:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A general framework for determining fundamental bounds in nanophotonics is introduced in this paper. The theory is based on convex optimization of dual problems constructed from operators generated by electromagnetic integral equations. The optimized variable is a contrast current defined within a prescribed region of a given material constitutive relations. Two power conservation constraints analogous to the optical theorem are utilized to tighten the bounds and to prescribe either losses or material properties. Thanks to the utilization of matrix rank-1 updates, modal decompositions, and model order reduction techniques, the optimization procedure is computationally efficient even for complicated scenarios. No dual gaps are observed. The method is well-suited to accommodate material anisotropy and inhomogeneity. To demonstrate the validity of the method, bounds on scattering, absorption, and extinction cross sections are derived first and evaluated for several canonical regions. The tightness of the bounds is verified by comparison to optimized spherical nanoparticles and shells. The next metric investigated is bi-directional scattering studied closely on a particular example of an electrically thin slab. Finally, the bounds are established for Purcell's factor and local field enhancement where a dimer is used as a practical example.
  •  
8.
  • Korten, Till, et al. (författare)
  • Design of network-based biocomputation circuits for the exact cover problem
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Exact cover is a non-deterministic polynomial time (NP)-complete problem that is central to optimization challenges such as airline fleet planning and allocation of cloud computing resources. Solving exact cover requires the exploration of a solution space that increases exponentially with cardinality. Hence, it is time- and energy consuming to solve large instances of exact cover by serial computers. One approach to address these challenges is to utilize the inherent parallelism and high energy efficiency of biological systems in a network-based biocomputation (NBC) device. NBC is a parallel computing paradigm in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. The network is then explored in parallel using a large number of biological agents, such as molecular-motor-propelled protein filaments. The answer to the combinatorial problem can then be inferred by measuring the positions through which the agents exit the network. Here, we (i) show how exact cover can be encoded and solved in an NBC device, (ii) define a formalization that allows to prove the correctness of our approach and provides a mathematical basis for further studying NBC, and (iii) demonstrate various optimizations that significantly improve the computing performance of NBC. This work lays the ground for fabricating and scaling NBC devices to solve significantly larger combinatorial problems than have been demonstrated so far.
  •  
9.
  • Maitrallain, A., et al. (författare)
  • Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator
  • 2022
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Laser wakefield accelerators commonly produce on-axis, low-divergence, high-energy electron beams. However, a high charge, annular shaped beam can be trapped outside the bubble and accelerated to high energies. Here we present a parametric study on the production of low-energy-spread, ultra-relativistic electron ring beams in a two-stage gas cell. Ring-shaped beams with energies higher than 750 MeV are observed simultaneously with on axis, continuously injected electrons. Often multiple ring shaped beams with different energies are produced and parametric studies to control the generation and properties of these structures were conducted. Particle tracking and particle-in-cell simulations are used to determine properties of these beams and investigate how they are formed and trapped outside the bubble by the wake produced by on-axis injected electrons. These unusual femtosecond duration, high-charge, high-energy, ring electron beams may find use in beam driven plasma wakefield accelerators and radiation sources.
  •  
10.
  • Maroju, P. K., et al. (författare)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • Ingår i: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 71
Typ av publikation
tidskriftsartikel (69)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (71)
Författare/redaktör
Blackburn, Thomas, 1 ... (3)
Delsing, Per, 1959 (2)
Dzhigaev, D. (1)
Björling, A. (1)
Mikkelsen, A. (1)
Wallentin, J. (1)
visa fler...
Li, H. L. (1)
Zhang, Z. (1)
Kim, M. S. (1)
Kato, C. (1)
Tunnell, C. D. (1)
Fulgione, W. (1)
Lang, R. F. (1)
Clark, M. (1)
Depoian, A. (1)
Kopec, A. (1)
Ma, Y. (1)
Peres, R. (1)
Qin, J. (1)
Arefiev, A. (1)
Xu, Y. (1)
O'Sullivan, Erin (1)
Katsavounidis, E. (1)
Nguyen, Son Tien, 19 ... (1)
Magnusson, Björn (1)
Frisk Kockum, Anton, ... (1)
Pagliaroli, G. (1)
Bardarson, Jens H. (1)
Pozina, Galia (1)
Griswold, S. (1)
Lamoureux, M. (1)
Lincetto, M. (1)
Gustafsson, Mats (1)
He, Y. (1)
Meyer, M. (1)
Vigorito, C. F. (1)
BenZvi, S. Y. (1)
Larson, Jonas (1)
Abdel-Hafiez, Mahmou ... (1)
Eriksson, Olle, 1960 ... (1)
Tseng, J. (1)
Scholberg, K. (1)
Pointon, B. W. (1)
Renshaw, A. (1)
Takhistov, V (1)
Migenda, J. (1)
Kuhn, S (1)
Xavier, Guilherme B. (1)
Durante, M (1)
King, B. (1)
visa färre...
Lärosäte
Stockholms universitet (18)
Lunds universitet (18)
Uppsala universitet (14)
Kungliga Tekniska Högskolan (10)
Chalmers tekniska högskola (7)
Göteborgs universitet (6)
visa fler...
Linköpings universitet (6)
Linnéuniversitetet (5)
Karlstads universitet (3)
Umeå universitet (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
visa färre...
Språk
Engelska (71)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (67)
Teknik (12)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy