SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:1750 1326) srt2:(2010-2014) srt2:(2012)"

Sökning: (L773:1750 1326) srt2:(2010-2014) > (2012)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rogers, Kathryn, et al. (författare)
  • Modulation of γ-secretase by EVP-0015962 reduces amyloid deposition and behavioral deficits in Tg2576 mice.
  • 2012
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A hallmark of Alzheimer’s disease is the presence of senile plaques in human brain primarily containing the amyloid peptides Aβ42 and Aβ40. Many drug discovery efforts have focused on decreasing the production of Aβ42 through γ-secretase inhibition. However, identification of γ-secretase inhibitors has also uncovered mechanism-based side effects. One approach to circumvent these side effects has been modulation of γ-secretase to shift Aβ production to favor shorter, less amyloidogenic peptides than Aβ42, without affecting the overall cleavage efficiency of the enzyme. This approach, frequently called γ-secretase modulation, appears more promising and has lead to the development of new therapeutic candidates for disease modification in Alzheimer’s disease. Results: Here we describe EVP-0015962, a novel small molecule γ-secretase modulator. EVP-0015962 decreased Aβ42 in H4 cells (IC50 = 67 nM) and increased the shorter Aβ38 by 1.7 fold at the IC50 for lowering of Aβ42. AβTotal, as well as other carboxyl-terminal fragments of amyloid precursor protein, were not changed. EVP-0015962 did not cause the accumulation of other γ-secretase substrates, such as the Notch and ephrin A4 receptors, whereas a γ-secretase inhibitor reduced processing of both. A single oral dose of EVP-0015962 (30 mg/kg) decreased Aβ42 and did not alter AβTotal peptide levels in a dose-dependent manner in Tg2576 mouse brain at an age when overt Aβ deposition was not present. In Tg2576 mice, chronic treatment with EVP-0015962 (20 or 60 mg/kg/day in a food formulation) reduced Aβ aggregates, amyloid plaques, inflammatory markers, and cognitive deficits. Conclusions: EVP-0015962 is orally bioavailable, detected in brain, and a potent, selective γ-secretase modulator in vitro and in vivo. Chronic treatment with EVP-0015962 was well tolerated in mice and lowered the production of Aβ42, attenuated memory deficits, and reduced Aβ plaque formation and inflammation in Tg2576 transgenic animals. In summary, these data suggest that γ-secretase modulation with EVP-0015962 represents a viable therapeutic alternative for disease modification in Alzheimer’s disease.
  •  
2.
  • Sun, Yanyan, et al. (författare)
  • Apoptosis-inducing factor downregulation increased neuronal progenitor, but not stem cell, survival in the neonatal hippocampus after cerebral hypoxiaischemia.
  • 2012
  • Ingår i: Molecular neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: A considerable proportion of all newly generated cells in the hippocampus will die before becoming fully differentiated, both under normal and pathological circumstances. The caspase-independent apoptosis-inducing factor (AIF) has not been investigated previously in this context. RESULTS: Postnatal day 8 (P8) harlequin (Hq) mutant mice, expressing lower levels of AIF, and wild type littermates were injected with BrdU once daily for two days to label newborn cells. On P10 mice were subjected to hypoxia-ischemia (HI) and their brains were analyzed 4 h, 24 h or 4 weeks later. Overall tissue loss was 63.5% lower in Hq mice 4 weeks after HI. Shortterm survival (4 h and 24 h) of labeled cells in the subgranular zone was neither affected by AIF downregulation, nor by HI. Long-term (4 weeks) survival of undifferentiated, BLBPpositive stem cells was reduced by half after HI, but this was not changed by AIF downregulation. Neurogenesis, however, as judged by BrdU/NeuN double labeling, was reduced by half after HI in wild type mice but preserved in Hq mice, indicating that primarily neural progenitors and neurons were protected. A wave of cell death started early after HI in the innermost layers of the granule cell layer (GCL) and moved outward, such that 24 h after HI dying cells could be detected in the entire GCL. CONCLUSIONS: These findings demonstrate that AIF downregulation provides not only long-term overall neuroprotection after HI, but also protects neural progenitor cells, thereby rescuing hippocampal neurogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy