SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(L773:1873 2844 OR L773:1352 2310) srt2:(2020-2024) srt2:(2024)"

Sökning: (L773:1873 2844 OR L773:1352 2310) srt2:(2020-2024) > (2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boikos, Christos, et al. (författare)
  • Validating CFD modelling of ship plume dispersion in an urban environment with pollutant concentration measurements
  • 2024
  • Ingår i: Atmospheric Environment. - 1873-2844 .- 1352-2310. ; 319
  • Tidskriftsartikel (refereegranskat)abstract
    • Air pollution in urban areas constitutes a global environmental problem, with shipping being one major contributor to hazardous pollutants in harbour areas. This work concerns the application of a method using CFD modelling to study how ships affect the air quality of port areas at a microscale level. A steady RANS-CFD approach was applied to simulate the dispersion of shipping-emitted pollutants, and a spatial sensitivity analysis of the CFD modelling results was conducted. The port of Marseille was used as a case study, and the CFD predictions were compared with on-site observations from two monitoring stations for CO2, CO, NOx, SO2 and PM concentrations. Representative modelled and measured concentrations were considered at the location of the monitoring stations to facilitate one-by-one comparisons for all pollutants in three different test cases of departing vessels. The modelling predictions presented an 8.2% (95% CI: -9.3%, 25.7%) average deviation from the measurements. Validation metrics were included to conduct a statistical comparison between predicted and measured concentrations, with almost all metric values indicating acceptable agreement between the CFD model and measurements. From a technical perspective, this study demonstrates the reliability of the applied CFD modelling method in estimating shipping plume dispersion, while from a societal perspective, this model can serve as an advisory tool for port authorities and policy makers to reduce the impact of shipping emissions on urban air quality.
  •  
2.
  • Gustafsson, Malin S.M., et al. (författare)
  • Air pollution removal with urban greenery – Introducing the Vegetation Impact Dynamic Assessment model (VIDA)
  • 2024
  • Ingår i: Atmospheric Environment. - Göteborg : IVL Svenska Miljöinstitutet. - 1352-2310 .- 1873-2844. ; 323, s. 120397-120397
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban greenery is identified as a potential tool in air pollution mitigation. However, the impact is still debated. This paper introduces the innovative VIDA (Vegetation Impact Dynamic Assessment) model, specifically designed to quantify air pollution removal through deposition on vegetation. The VIDA model offers an advanced representation of vegetation that could be integrated into urban air quality dispersion models in the future. Furthermore, the model serves as a valuable tool for exploring the intricate interactions among deposition, resuspension, and wash-off processes, as well as understanding how meteorological conditions and various leaf traits influence these processes.The current version of the model focuses on particulate matter (PM) and encompasses a range of processes, including deposition on vegetation surfaces, encapsulation within the waxy cuticle, wind-driven resuspension, and wash-off.Additionally, the model takes into consideration dynamic changes in PM concentrations on the leaf surface over time, incorporating factors such as PM size fractions, meteorological conditions, and leaf characteristics. This comprehensive approach allows for the evaluation of various species or species groups based on their distinct traits. The VIDA model effectively reproduces measured data, yet continued evaluation remains crucial as new data emerges. Notably, challenges are encountered due to data scarcity and the absence of standardized methods for characterizing vegetation traits. Addressing these challenges and refining the representation of wash-off process will enhance the VIDA model's utility in predicting the dynamic relationship between vegetation and air quality. The introduction of VIDA provides a significant advancement in modelling air pollution removal by deposition to vegetation at a relevant local scale and enables inclusion of urban greenery as tool in urban planning for air pollution mitigation. 
  •  
3.
  • Kong, Xiangrui, et al. (författare)
  • Impact of SO2 and light on chemical morphology and hygroscopicity of natural salt aerosols
  • 2024
  • Ingår i: Atmospheric Environment. - 1352-2310 .- 1873-2844. ; 322
  • Tidskriftsartikel (refereegranskat)abstract
    • The interactions between SO2 and natural salt aerosol particles represent complex and crucial dynamics within atmospheric processes and the broader climate system. This study investigated the SO2 uptake, hygroscopicity, morphology and mixing states of natural salt particles, which are generated from brines sampled from the Chaka salt lake located in the Qinghai-Tibet plateau. A comparison with atomized pure NaCl particles is included as reference. The results show that NaCl particles exhibit the lowest SO2 uptake, while Chaka salt particles demonstrate higher uptake due to their complex composition. The hygroscopicity of salt particles is influenced by several factors, including chemical complexity, SO2 exposure and light conditions. In comparison to pure NaCl, Chaka salt displays higher hygroscopicity, which is further enhanced in the presence of SO2. However, when exposed to light, mass growth is suppressed, suggesting the formation of species with lower hygroscopicity, such as Na2SO4. Analysis of particle morphology and mixing states reveals notable distinctions between NaCl crystals and Chaka salt particles, where the Chaka salt particles exhibit rounded shapes with a structure composed of cubic NaCl cores surrounded by sulfate materials as a coating. In addition, the chemical morphology analysis also reveals that the particles show morphological and spectral changes before and after the exposure to SO2, light and high RH. Therefore, this research highlights the intricate interactions between SO2 and natural salt aerosol particles in diverse environmental settings, underscoring their multifaceted impacts on atmospheric processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy