SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(LAR1:cth) lar1:(gu) lar1:(cth) pers:(Blanck Hans 1950) srt2:(2015-2019)"

Sökning: (LAR1:cth) lar1:(gu) lar1:(cth) pers:(Blanck Hans 1950) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson Trojer, Markus, 1981, et al. (författare)
  • Polymer Core-Polymer Shell Particle Formation Enabled by Ultralow Interfacial Tension Via Internal Phase Separation: Morphology Prediction Using the Van Oss Formalism
  • 2018
  • Ingår i: Colloid and Interface Science Communications. - : Elsevier BV. - 2215-0382. ; 25, s. 36-40
  • Tidskriftsartikel (refereegranskat)abstract
    • The internal phase separation technique is a versatile method for liquid core-polymer shell formation, yet limited to very hydrophobic core materials and actives. The use of polymeric cores instead circumvents this restriction due to the absent mixing entropy for binary polymer mixtures which allows the polymeric core (and the active) to approach the polarity of the shell. Polystyrene core-shell and janus particles were formulated using polymethylmethacrylate, poly(lactic acid), poly(lactic acid-co-glycolic acid), poly(epsilon-caprolactone) or cellulose triacetate as shell-forming polymers. The morphology and the partitioning was experimentally determined by selectively staining the core and the shell with beta-carotene and methylene blue respectively. In addition, the van Oss formalism was introduced to theoretically predict the thermodynamic equilibrium morphology. As elucidated using the theoretical predictions as well as experimental optical tensiometry, it was found that the driving force for core-shell morphology is, in contrast to liquid core-polymer shell particles, a low core-shell interfacial tension.
  •  
2.
  • Andersson Trojer, Markus, et al. (författare)
  • Use of anchoring amphiphilic diblock copolymers for encapsulation of hydrophilic actives in polymeric microcapsules : methodology and encapsulation efficiency
  • 2019
  • Ingår i: Colloid and Polymer Science. - : Springer Science and Business Media LLC. - 0303-402X .- 1435-1536. ; 297:2, s. 307-313
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous core-shell particles based on polystyrene, poly(methyl methacrylate) or polycaprolactone have been formulated using a facile double emulsion-based solvent evaporation method. The size distribution is narrow, and the morphology control is remarkable given the simple characteristics of the encapsulation method. The inner droplets are stabilized by oil-soluble poly(ethylene oxide)-based block copolymers which are anchored in the polymeric shell by using hydrophobic blocks of the same type as that of the shell-forming polymer. This facilitates the efficient encapsulation of dyes and hydrophilic biocides. [Figure not available: see fulltext.].
  •  
3.
  • Andersson Trojer, Markus, 1981, et al. (författare)
  • Use of microcapsules as controlled release devices for coatings
  • 2015
  • Ingår i: Advances in Colloid and Interface Science. - : Elsevier BV. - 0001-8686. ; 222, s. 18-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Biofouling of surfaces is a considerable problem in many industrial sectors and for the public community in general. The problem is usually approached by the use of functional coatings and most of such antifouling coatings rely on the effect of biocides. However, a substantial drawback is the poor control over the release of the biocide as well as its degradation in the paint. Encapsulation of the biocides in microcapsules is a promising approach that may overcome some of the problems associated with the more traditional ways of incorporating the antifouling agent into the formulation. In this review, we summarize more than a decade of microcapsule research from our lab as well as from other groups working on this topic. Focus will be on two coacervation-based encapsulation techniques; the internal phase separation method and the double emulsion method, which together enable the encapsulation of a broad spectrum of biocides with different physicochemical properties. The release of the biocide from core-shell particles and from encapsulated biocides in coatings is treated in detail. The release behaviour is interpreted in terms of the physicochemical properties of the core-shell particle and the coating matrix. In addition, special attention is given to the experimental release methodology and the implementation of proper diffusion models to describe the release. At the end of the review examples of antifouling properties of some coatings against common biofoulers are presented.
  •  
4.
  • Eriksson, Martin, 1970, et al. (författare)
  • Long-term effects of the antibacterial agent triclosan on marine periphyton communities
  • 2015
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley. - 0730-7268 .- 1552-8618. ; 34:9, s. 2067-2077
  • Tidskriftsartikel (refereegranskat)abstract
    • Triclosan is a widely used antibacterial agent that has become a ubiquitous contaminant in freshwater, estuary, and marine environments. Concerns about potential adverse effects of triclosan have been described in several recent risk assessments. Its effects on freshwater microbial communities have been well studied, but studies addressing effects on marine microbial communities are scarce. In the present study, the authors describe short- and long-term effects of triclosan on marine periphyton (microbial biofilm) communities. Short-term effects on photosynthesis were estimated after 60min to 210min of exposure. Long-term effects on photosynthesis, chlorophyll a fluorescence, pigment content, community tolerance, and bacterial carbon utilization were studied after exposing periphyton for 17d in flow-through microcosms to 0.316nM to 10000nM triclosan. Results from the short-term studies show that triclosan is toxic to periphyton photosynthesis. Half maximal effective concentration (EC50) values of 1080nM and 3000nM were estimated using (CO2)-C-14-incorporation and pulse amplitude modulation (PAM) fluorescence measurements, respectively. After long-term triclosan exposure in flow-through microcosms, photosynthesis estimated using PAM fluorometry was not inhibited by triclosan concentrations up to 1000nM but instead increased with increasing triclosan concentration. Similarly, at exposure concentrations of 31.6nM and higher, triclosan caused an increase in photosynthetic pigments. At 316nM triclosan, the pigment amounts were increased by a factor of 1.4 to 1.9 compared with the control level. Pollution-induced community tolerance was observed for algae and cyanobacteria at 100nM triclosan and higher. Despite the widespread use of triclosan as an antibacterial agent, the compound did not have any effects on bacterial carbon utilization after long-term exposure.
  •  
5.
  • Lundström, Sara, 1981, et al. (författare)
  • Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 553, s. 587-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Selection pressure generated by antibiotics released into the environment could enrich for antibiotic resistance genes and antibiotic resistant bacteria, thereby increasing the risk for transmission to humans and animals. Tetracyclines comprise an antibiotic class of great importance to both human and animal health. Accordingly, residues of tetracycline are commonly detected in aquatic environments. To assess if tetracycline pollution in aquatic environments promotes development of resistance, we determined minimal selective concentrations (MSCs) in biofilms of complex aquatic bacterial communities using both phenotypic and genotypic assays. Tetracycline significantly increased the relative abundance of resistant bacteria at 10 μg/L, while specific tet genes (tetA and tetG) increased significantly at the lowest concentration tested (1 μg/L). Taxonomic composition of the biofilm communities was altered with increasing tetracycline concentrations. Metagenomic analysis revealed a concurrent increase of several tet genes and a range of other genes providing resistance to different classes of antibiotics (e.g. cmlA, floR, sul1, and mphA), indicating potential for co-selection. Consequently, MSCs for the tet genes of ≤ 1 μg/L suggests that current exposure levels in e.g. sewage treatment plants could be sufficient to promote resistance. The methodology used here to assess MSCs could be applied in risk assessment of other antibiotics as well.
  •  
6.
  • Sanli, Kemal, et al. (författare)
  • Metagenomic Sequencing of Marine Periphyton: Taxonomic and Functional Insights into Biofilm Communities
  • 2015
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 6:1192
  • Tidskriftsartikel (refereegranskat)abstract
    • Periphyton communities are complex phototrophic, multispecies biofilms that develop on surfaces in aquatic environments. These communities harbor a large diversity of organisms comprising viruses, bacteria, algae, fungi, protozoans and metazoans. However, thus far the total biodiversity of periphyton has not been described. In this study, we use metagenomics to characterize periphyton communities from the marine environment of the Swedish west coast. Although we found approximately ten times more eukaryotic rRNA marker gene sequences compared to prokaryotic, the whole metagenome-based similarity searches showed that bacteria constitute the most abundant phyla in these biofilms. We show that marine periphyton encompass a range of heterotrophic and phototrophic organisms. Heterotrophic bacteria, including the majority of proteobacterial clades and Bacteroidetes, and eukaryotic macro-invertebrates were found to dominate periphyton. The phototrophic groups comprise Cyanobacteria and the alpha-proteobacterial genus Roseobacter, followed by different micro- and macro-algae. We also assess the metabolic pathways that predispose these communities to an attached lifestyle. Functional indicators of the biofilm form of life in periphyton involve genes coding for enzymes that catalyze the production and degradation of extracellular polymeric substances, mainly in the form of complex sugars such as starch and glycogen-like meshes together with chitin. Genes for 278 different transporter proteins were detected in the metagenome, constituting the most abundant protein complexes. Finally, genes encoding enzymes that participate in anaerobic pathways, such as denitrification and methanogenesis, were detected suggesting the presence of anaerobic or low-oxygen micro-zones within the biofilms.
  •  
7.
  • Tlili, A., et al. (författare)
  • Pollution-induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems
  • 2016
  • Ingår i: Freshwater Biology. - : Wiley. - 0046-5070 .- 1365-2427. ; 61:12, s. 2141-2151
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in environmental risk assessment of pollutants is establishing a causal relationship between field exposure and community effects that integrates both structural and functional complexity within ecosystems. Pollution-induced community tolerance (PICT) is a concept that evaluates whether pollutants have exerted a selection pressure on natural communities. PICT detects whether a pollutant has eliminated sensitive species from a community and thereby increased its tolerance. PICT has the potential to link assessments of the ecological and chemical status of ecosystems by providing causal analysis for effect-based monitoring of impacted field sites. Using PICT measurements and microbial community endpoints in environmental assessment schemes could give more ecological relevance to the tools that are now used in environmental risk assessment. Here, we propose practical guidance and a list of research issues that should be further considered to apply the PICT concept in the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy