SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "(WFRF:(Öberg Johan)) srt2:(1995-1999)"

Search: (WFRF:(Öberg Johan)) > (1995-1999)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arlinger, Stig, 1939-, et al. (author)
  • Clinical trial of a digital hearing aid
  • 1998
  • In: Scandinavian Audiology. - : Taylor & Francis. - 0105-0397 .- 1940-2872. ; 27:1, s. 51-61
  • Journal article (peer-reviewed)abstract
    • A clinical trial of Oticon DigiFocus hearing aid was performed. The test aid was evaluated on 33 subjects with several years' experience as users of modern analog hearing aids. These aids were used as reference for the 1-month-long trial. The Abbreviated Profile of Hearing Aid Benefit (APHAB) showed a mean difference in benefit with superior ratings for the test aid concerning ease of communication, speech in reverberation and speech in background noise. The subjects' own aids were rated somewhat better concerning aversiveness of sounds, but this difference was not statistically significant. The Gothenburg Profile showed a statistically significant difference between the test aid and the reference aids in favour of the test aid. The difference was not most evident with regard to speech communication and the effects of hearing loss on social interactions. Sound quality ratings concerning clearness were significantly higher for the test aid. Speech recognition thresholds in noise were on average 0.7 dB better for the test aids when tested at speech levels 60 and 75 dB. The difference was statistically significant only at 75 dB. There was significant interaction between general preference and hearing aid type, indicating that overall sound quality was an important factor affecting the general preference for either the test aid or the reference aid. Twenty-three subjects generally preferred the test aid, six preferred their own aid and four stated no difference.
  •  
2.
  • Botling, Johan, et al. (author)
  • CD49f (alpha 6 integrin) and CD66a (BGP) are specifically induced by retinoids during human monocytic differentiation
  • 1995
  • In: Leukemia. - 0887-6924 .- 1476-5551. ; 9:12, s. 2034-41
  • Journal article (peer-reviewed)abstract
    • Retinoic acid (RA) and 1,25(OH)2-cholecalciferol (VitD3) are potent regulators of normal and malignant myeloid cells. In the human monoblast cell line U-937 they induce terminal differentiation, and the resulting phenotypes display both common and distinct, inducer-specific, properties. This paper shows that in U-937 cells the two retinoids, all-trans and 9-cis RA, induced the expression of CD49f (alpha 6 integrin subunit) and CD66a (biliary glycoprotein, BGP) mRNA and protein. In contrast, expression of CD49f and CD66a was not found in untreated or VitD3-induced cells. Cytokine-induced modulation of CD49f and CD66a expression was restricted to the retinoid-induced U-937 cells. The retinoid specific induction of CD49f and CD66a was confirmed in the related monoblastic cell line THP-1. Human blood monocytes and the monocytic cell line Mono Mac 6 responded poorly to RA, with respect to the regulation of CD49f and CD66a expression, indicating that early monocytic precursors were targets for the retinoid-specific regulation. Thus, the expression of CD49f and CD66a is developmentally regulated and specifically induced by all-trans and 9-cis Ra in human monocytic cells.
  •  
3.
  • Botling, Johan, et al. (author)
  • Retinoic acid receptor/retinoid X receptor heterodimers can be activated through both subunits providing a basis for synergistic transactivation and cellular differentiation
  • 1997
  • In: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 272:14, s. 9443-9
  • Journal article (peer-reviewed)abstract
    • The receptor for 9-cis-retinoic acid, retinoid X receptor (RXR), forms heterodimers with several nuclear receptors, including the receptor for all-trans-retinoic acid, RAR. Previous studies have shown that retinoic acid receptor can be activated in RAR/RXR heterodimers, whereas RXR is believed to be a silent co-factor. In this report we show that efficient growth arrest and differentiation of the human monocytic cell line U-937 require activation of both RAR and RXR. Also, we demonstrate that the allosteric inhibition of RXR is not obligatory and that RXR can be activated in the RAR/RXR heterodimer in the presence of RAR ligands. Remarkably, RXR inhibition by RAR can also be relieved by an RAR antagonist. Moreover, the dose response of RXR agonists differ between RXR homodimers and RAR/RXR heterodimers, indicating that these complexes are pharmacologically distinct. Finally, the AF2 activation domain of both subunits contribute to activation even if only one of the receptors is associated with ligand. Our data emphasize the importance of signaling through both subunits of a heterodimer in the physiological response to retinoids and show that the activity of RXR is dependent on both the identity and the ligand binding state of its partner.
  •  
4.
  • Botling, Johan, et al. (author)
  • Vitamin D3 and retinoic acid induced monocytic differentiation : Interactions between the endogenous vitamin D3, retinoic acid and retinoid X receptors in U-937 cells
  • 1996
  • In: Cell growth & differentiation. - 1044-9523. ; 7:9, s. 1239-49
  • Journal article (peer-reviewed)abstract
    • Retinoic acid (RA) and 1,25 alpha-dihydroxycholecalciferol (VitD3) are potent regulators of hematopoletic differentiation. Yet, little is known as to how the RA and VitD3 receptor network operates in hematopoietic cells, and whether receptor interactions can explain the interplay between the RA- and VitD3-signaling pathways during differentiation. Therefore, we analyzed the expression, DNA binding, and transcriptional activity of the endogenous RA and VitD3 receptors [retinoic acid receptors (RARs), retinoid X receptors (RXRs), and VitD3 receptor (VDR)] in the U-937 cell line, in which RA and VitD3 induce distinct monocytic differentiation pathways. VitD3 induction resulted in the formation of VDR/RXR DNA-binding complexes on both VitD3 response elements and RA response elements (RAREs). However, transcriptional activation was only observed from a VitD3 response element-driven reporter construct. Several DNA-binding complexes were detected on RAREs in undifferentiated cells. Stimulation by RA resulted in increased RAR beta/RXR DNA binding, activated RARE-dependent transcription, and increased expression of RAR-beta. Concomitant stimulation by VitD3 inhibited the RA-stimulated formation of RAR beta/RXR heterodimers, favoring VDR/RXR binding to the RARE. Also, VitD3 inhibited the expression of CD23 and CD49f, characteristic markers of retinoid-induced U-937 cell differentiation. In contrast, neither the RA-stimulated, RARE-mediated transcription nor the induced RAR-beta expression was suppressed by VitD3, suggesting that VitD3 selectively inhibited the retinoid-induced differentiation program but not the RARE-mediated signal. These results demonstrate a complex role for VitD3 in modifying the retinoid differentiation pathway and may have implications for differentiation-inducing therapy of hematopoietic tumors.
  •  
5.
  • Larsson, Erik, et al. (author)
  • Expression of the endogenous retrovirus ERV3 (HERV-R) during induced monocytic differentiation in the U-937 cell line
  • 1996
  • In: International Journal of Cancer. - 0020-7136 .- 1097-0215. ; 67:3, s. 451-456
  • Journal article (peer-reviewed)abstract
    • ERV3 (HERV-R) is a complete human endogenous retrovirus located on the long arm of chromosome 7. LTR-env-gene-spliced mRNA of 9 and 3.5 Kb is widely expressed in human tissues and cells, but gag-pol mRNA has not been found. Further, the env gp70 gene contains an open reading frame throughout its length and its expression has recently been detected as a full-length protein. The highest expression of ERV3 detected so far is in placenta and the lowest in cytotrophoblasts and choriocarcinoma cell lines. In this report we have studied ERV3 mRNA and protein expression in the human monoblastic cell line U-937 during differentiation into monocytes/macrophages. Differentiation of U-937 cells was induced by 1,25a-dihydroxyvitamin D3 (vitD3), retinoic acid (RA), gamma interferon (IFN-gamma) and phorbol-myristate-acetate (PMA-TPA). The expression of ERV3 env mRNA was found to be differentiation-associated, with high expression detected in the late stages of monocytic development. Using TPA, the expression of ERV3 env was detected as 9- and 3.5-kb transcripts by Northern blotting, as mRNA by in situ hybridization and as a cytoplasmic 65-kDa protein by immunofluorescence and Western blots. Low levels of basal expression were found, with up-regulation of both message and protein at 24 to 48 hr after addition of TPA. Induction with vitD3, IFN-gamma and RA produced higher levels of mRNA at earlier time points. It is concluded that the U-937 cell line represents an excellent model system for further studies to study the relationship between ERV3 expression and cellular differentiation.
  •  
6.
  • Larsson, Erik, et al. (author)
  • Tissue and differentiation specific expression of the endogenous retrovirus ERV3 (HERV-R) in normal human tissues and during induced monocytic differentiation in the U-937 cell line
  • 1997
  • In: Leukemia. - 0887-6924 .- 1476-5551. ; 11:Suppl. 3, s. 142-4
  • Journal article (peer-reviewed)abstract
    • ERV3 (HERV-R) is a complete, single copy human endogenous retrovirus located on the long arm of chromosome 7. The open reading frame in its envelope gene has been conserved during evolution but the gag and pol genes contain in-frame termination codons. To find a suitable experimental model system for analysis of the functions of the ERV3 genome, an extensive screening study of different normal and neoplastic human tissues was performed. Most tissues express low levels of the ERV3 env mRNA although high expression levels are observed in placenta, sebaceous glands, adrenals, testis, bronchial, epithelium and the monocytic cell line U-937. In U-937 cells the ERV3 env expression varied in a manner related to the differentiation status of the cells; being highest in the terminally differentiated non proliferating cells. U-937 cells can be induced to differentiate from the monoblastic to the mature monocyte/macrophage stage upon stimulation by several substances such as phorbolesters (TPA), Vitamin D3, Retinoic Acid (RA) and combinations of some cytokines. We conclude that the ERV3 locus is expressed in a tissue and differentiation specific way and that the U-937 cell line is a suitable model system to further analyze the proposed functions of ERVs such as immunomodulation, cell fusion and protection against exogenous retroviral infections.
  •  
7.
  • Tenno, Taavo, et al. (author)
  • Tissue factor expression in human monocytic cell lines
  • 1997
  • In: Thrombosis Research. - 0049-3848 .- 1879-2472. ; 88:2, s. 215-28
  • Journal article (peer-reviewed)abstract
    • Tissue factor (TF) is a main initiator of the coagulation protease cascade. Control of the expression of this protein in monocytes is essential, since these cells are the only circulating blood cells responsible for TF expression. In this report we have used two human cell lines, arrested at different stages of monocytic differentiation, to study TF expression. The monoblastic cell line U-937 had a constitutive expression of TF surface protein and low TF mRNA levels detected by immunofluorescence or quantitative reverse transcriptase polymerase chain reaction respectively. The phorbol-12-myristate-13-acetate (PMA) was a potent enhancer of TF expression in U-937. Lipopolysaccharide (LPS) and tumor necrosis factor (TNF) had no effect on TF expression in U-937. The Mono Mac 6 cell line, with phenotypic features similar to that of mature monocytes, expressed lower basal levels of TF mRNA and surface TF antigen. However, in Mono Mac 6 cells TF expression was induced in response to LPS and TNF. These results indicate differences in basal and induced TF expression between U-937 and Mono Mac 6 cell lines.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view