SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Albanes D)) lar1:(lu) srt2:(2020-2021)"

Sökning: (WFRF:(Albanes D)) lar1:(lu) > (2020-2021)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Joyce Y., et al. (författare)
  • Circulating markers of cellular immune activation in prediagnostic blood sample and lung cancer risk in the Lung Cancer Cohort Consortium (LC3)
  • 2020
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:9, s. 2394-2405
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-mediated immune suppression may play an important role in lung carcinogenesis. We investigated the associations for circulating levels of tryptophan, kynurenine, kynurenine:tryptophan ratio (KTR), quinolinic acid (QA) and neopterin as markers of immune regulation and inflammation with lung cancer risk in 5,364 smoking-matched case-control pairs from 20 prospective cohorts included in the international Lung Cancer Cohort Consortium. All biomarkers were quantified by mass spectrometry-based methods in serum/plasma samples collected on average 6 years before lung cancer diagnosis. Odds ratios (ORs) and 95% confidence intervals (CIs) for lung cancer associated with individual biomarkers were calculated using conditional logistic regression with adjustment for circulating cotinine. Compared to the lowest quintile, the highest quintiles of kynurenine, KTR, QA and neopterin were associated with a 20-30% higher risk, and tryptophan with a 15% lower risk of lung cancer (all p(trend) < 0.05). The strongest associations were seen for current smokers, where the adjusted ORs (95% CIs) of lung cancer for the highest quintile of KTR, QA and neopterin were 1.42 (1.15-1.75), 1.42 (1.14-1.76) and 1.45 (1.13-1.86), respectively. A stronger association was also seen for KTR and QA with risk of lung squamous cell carcinoma followed by adenocarcinoma, and for lung cancer diagnosed within the first 2 years after blood draw. This study demonstrated that components of the tryptophan-kynurenine pathway with immunomodulatory effects are associated with risk of lung cancer overall, especially for current smokers. Further research is needed to evaluate the role of these biomarkers in lung carcinogenesis and progression.
  •  
2.
  • Ji, Xuemei, et al. (författare)
  • Protein-altering germline mutations implicate novel genes related to lung cancer development
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio=8.82, P=1.18x10(-15)) and replication (adjusted OR=2.93, P=2.22x10(-3)) that is more pronounced in females (adjusted OR=6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR=2.61, P=7.98x10(-22)) and replication datasets (adjusted OR=1.55, P=0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk. In lung cancer, relatively few germline mutations are known to impact risk. Here the authors looked at rare variants in 39,146 individuals and find novel germline mutations associated with risk, as well as implicating ATM and a new candidate gene for lung cancer risk.
  •  
3.
  • Zahed, Hana, et al. (författare)
  • Epidemiology of 40 blood biomarkers of one-carbon metabolism, vitamin status, inflammation, and renal and endothelial function among cancer-free older adults
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Imbalances of blood biomarkers are associated with disease, and biomarkers may also vary non-pathologically across population groups. We described variation in concentrations of biomarkers of one-carbon metabolism, vitamin status, inflammation including tryptophan metabolism, and endothelial and renal function among cancer-free older adults. We analyzed 5167 cancer-free controls aged 40–80 years from 20 cohorts in the Lung Cancer Cohort Consortium (LC3). Centralized biochemical analyses of 40 biomarkers in plasma or serum were performed. We fit multivariable linear mixed effects models to quantify variation in standardized biomarker log-concentrations across four factors: age, sex, smoking status, and body mass index (BMI). Differences in most biomarkers across most factors were small, with 93% (186/200) of analyses showing an estimated difference lower than 0.25 standard-deviations, although most were statistically significant due to large sample size. The largest difference was for creatinine by sex, which was − 0.91 standard-deviations lower in women than men (95%CI − 0.98; − 0.84). The largest difference by age was for total cysteine (0.40 standard-deviation increase per 10-year increase, 95%CI 0.36; 0.43), and by BMI was for C-reactive protein (0.38 standard-deviation increase per 5-kg/m2 increase, 95%CI 0.34; 0.41). For 31 of 40 markers, the mean difference between current and never smokers was larger than between former and never smokers. A statistically significant (p < 0.05) association with time since smoking cessation was observed for 8 markers, including C-reactive protein, kynurenine, choline, and total homocysteine. We conclude that most blood biomarkers show small variations across demographic characteristics. Patterns by smoking status point to normalization of multiple physiological processes after smoking cessation.
  •  
4.
  • Bosse, Yohan, et al. (författare)
  • Transcriptome-wide association study reveals candidate causal genes for lung cancer
  • 2020
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 146:7, s. 1862-1878
  • Tidskriftsartikel (refereegranskat)abstract
    • We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large‐scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome‐wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never‐ and ever‐smokers). We performed replication analysis using lung data from the Genotype‐Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever‐smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E−99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E−6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3‐adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E−5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.
  •  
5.
  • Lesseur, Corina, et al. (författare)
  • Genome-wide association meta-analysis identifies pleiotropic risk loci for aerodigestive squamous cell cancers
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.
  •  
6.
  • Loftfield, Erikka, et al. (författare)
  • Novel Biomarkers of Habitual Alcohol Intake and Associations With Risk of Pancreatic and Liver Cancers and Liver Disease Mortality
  • 2021
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 113:11, s. 1542-1550
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Alcohol is an established risk factor for several cancers, but modest alcohol-cancer associations may be missed because of measurement error in self-reported assessments. Biomarkers of habitual alcohol intake may provide novel insight into the relationship between alcohol and cancer risk.METHODS: Untargeted metabolomics was used to identify metabolites correlated with self-reported habitual alcohol intake in a discovery dataset from the European Prospective Investigation into Cancer and Nutrition (EPIC; n = 454). Statistically significant correlations were tested in independent datasets of controls from case-control studies nested within EPIC (n = 280) and the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC; n = 438) study. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations of alcohol-associated metabolites and self-reported alcohol intake with risk of pancreatic cancer, hepatocellular carcinoma (HCC), liver cancer, and liver disease mortality in the contributing studies.RESULTS: Two metabolites displayed a dose-response association with self-reported alcohol intake: 2-hydroxy-3-methylbutyric acid and an unidentified compound. A 1-SD (log2) increase in levels of 2-hydroxy-3-methylbutyric acid was associated with risk of HCC (OR = 2.54, 95% CI = 1.51 to 4.27) and pancreatic cancer (OR = 1.43, 95% CI = 1.03 to 1.99) in EPIC and liver cancer (OR = 2.00, 95% CI = 1.44 to 2.77) and liver disease mortality (OR = 2.16, 95% CI = 1.63 to 2.86) in ATBC. Conversely, a 1-SD (log2) increase in questionnaire-derived alcohol intake was not associated with HCC or pancreatic cancer in EPIC or liver cancer in ATBC but was associated with liver disease mortality (OR = 2.19, 95% CI = 1.60 to 2.98) in ATBC.CONCLUSIONS: 2-hydroxy-3-methylbutyric acid is a candidate biomarker of habitual alcohol intake that may advance the study of alcohol and cancer risk in population-based studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy