SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "(WFRF:(Allen David)) srt2:(2020-2024) srt2:(2023)"

Sökning: (WFRF:(Allen David)) srt2:(2020-2024) > (2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
3.
  • Giménez-García, Angel, et al. (författare)
  • Pollination supply models from a local to global scale
  • 2023
  • Ingår i: Web Ecology. - 1399-1183. ; 23:2, s. 99-129
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological intensification has been embraced with great interest by the academic sector but is still rarely taken up by farmers because monitoring the state of different ecological functions is not straightforward. Modelling tools can represent a more accessible alternative of measuring ecological functions, which could help promote their use amongst farmers and other decision-makers. In the case of crop pollination, modelling has traditionally followed either a mechanistic or a data-driven approach. Mechanistic models simulate the habitat preferences and foraging behaviour of pollinators, while data-driven models associate georeferenced variables with real observations. Here, we test these two approaches to predict pollination supply and validate these predictions using data from a newly released global dataset on pollinator visitation rates to different crops. We use one of the most extensively used models for the mechanistic approach, while for the data-driven approach, we select from among a comprehensive set of state-of-The-Art machine-learning models. Moreover, we explore a mixed approach, where data-derived inputs, rather than expert assessment, inform the mechanistic model. We find that, at a global scale, machine-learning models work best, offering a rank correlation coefficient between predictions and observations of pollinator visitation rates of 0.56. In turn, the mechanistic model works moderately well at a global scale for wild bees other than bumblebees. Biomes characterized by temperate or Mediterranean forests show a better agreement between mechanistic model predictions and observations, probably due to more comprehensive ecological knowledge and therefore better parameterization of input variables for these biomes. This study highlights the challenges of transferring input variables across multiple biomes, as expected given the different composition of species in different biomes. Our results provide clear guidance on which pollination supply models perform best at different spatial scales-the first step towards bridging the stakeholder-Academia gap in modelling ecosystem service delivery under ecological intensification.
  •  
4.
  • Holm, Jennifer A., et al. (författare)
  • Exploring the impacts of unprecedented climate extremes on forest ecosystems : Hypotheses to guide modeling and experimental studies
  • 2023
  • Ingår i: Biogeosciences. - 1726-4170. ; 20:11, s. 2117-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • Climatic extreme events are expected to occur more frequently in the future, increasing the likelihood of unprecedented climate extremes (UCEs) or record-breaking events. UCEs, such as extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such effects is limited due to the paucity of experiments focusing on extreme climatic events beyond the range of historical experience. Here, we present a road map of how dynamic vegetation demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem responses to UCEs that are qualitatively different from responses to milder extremes, we consider both biomass loss and recovery rates over time by reporting a time-integrated carbon loss as a result of UCE, relative to the absence of drought. Additionally, we explore how unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature may affect ecosystem stability and carbon cycling. We explored these questions using simulations of pre-drought and post-drought conditions at well-studied forest sites using well-tested models (ED2 and LPJ-GUESS). The severity and patterns of biomass losses differed substantially between models. For example, biomass loss could be sensitive to either drought duration or drought intensity depending on the model approach. This is due to the models having different, but also plausible, representations of processes and interactions, highlighting the complicated variability of UCE impacts that still need to be narrowed down in models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight the consequences of differences in process formulations and uncertainties in models, most notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the current state and role of many model processes that give way to different underlying hypotheses of plant responses to UCEs, reflecting knowledge gaps which in future studies could be tested with targeted field experiments and an iterative modeling-experimental conceptual framework.
  •  
5.
  • Lauerwald, Ronny, et al. (författare)
  • Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale Assessments
  • 2023
  • Ingår i: Global Biogeochemical Cycles. - : AMER GEOPHYSICAL UNION. - 0886-6236 .- 1944-9224. ; 37:5
  • Forskningsöversikt (refereegranskat)abstract
    • Inland waters are important emitters of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in estimating inland water GHG budgets at global scale, which has substantially advanced since the first phase of RECCAP nearly 10 years ago. The development of increasingly sophisticated upscaling techniques, including statistical prediction and process-based models, allows for spatially explicit estimates that are needed for regionalized assessments of continental GHG budgets such as those established for RECCAP. A few recent estimates also resolve the seasonal and/or interannual variability in inland water GHG emissions. Nonetheless, the global-scale assessment of inland water emissions remains challenging because of limited spatial and temporal coverage of observations and persisting uncertainties in the abundance and distribution of inland water surface areas. To decrease these uncertainties, more empirical work on the contributions of hot-spots and hot-moments to overall inland water GHG emissions is particularly needed.
  •  
6.
  • Saaka, Yussif, et al. (författare)
  • Characterisation of the apparent aqueous solubility enhancement of testosterone analogues in micelles of dodecyl-chained surfactants with different headgroups
  • 2023
  • Ingår i: Journal of Molecular Liquids. - 0167-7322. ; 385
  • Tidskriftsartikel (refereegranskat)abstract
    • The solubilisation capacities of the micelles formed by a range of surfactants possessing a dodecyl (C12) hydrocarbon ‘tail’ and a variety of hydrophilic ‘headgroups’ have been studied for a range of hydrophobic steroids (testosterone (T) and its propionate (TP) and enanthate (TE) esters). The solubilisation studies were performed at ambient temperature, with drug concentration monitored (over 48–72 h) by UV absorbance. The various surfactant systems were characterised in terms of their physicochemical properties, including their surface tension, critical micelle concentration, viscosity, and density. Results show that while the apparent aqueous solubility of the poorly water-soluble steroids increases upon solubilisation within the surfactant micelles, the extent of this increase varies with the nature of the hydrophilic headgroup and the hydrophobicity of the drug. Specifically, changing the surfactant headgroup from non-ionic to zwitterionic, then to ionic, results in a marked increase in solubility of the two least hydrophobic steroids, testosterone and testosterone propionate, suggesting rather counter-intuitively that these steroidal drugs tend to associate to a greater extent with micelles formed by surfactants with more hydrophilic/charged head groups. The more hydrophobic steroid, TE, was solubilised to the greatest extent, being predominantly solubilised within the micelle core. In this case, the influence of surfactant head group on TE solubilisation was less obvious, with surfactants containing ionic and zwitterionic head groups exhibiting high levels of solubilisation. The physicochemical properties that had most influence on solubilisation of the testosterone analogues, as evaluated using multiple linear regression, were micelle shape for T and TP, and critical micelle concentration for TE. Through the findings of this comparative study, the essential molecular descriptors of optimal solubilisation for improved drug delivery and the loci of solubilisation of the testosterone analogues have been identified.
  •  
7.
  • Scown, Murray W., et al. (författare)
  • Towards a global sustainable development agenda built on social-ecological resilience
  • 2023
  • Ingår i: Global Sustainability. - 2059-4798. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-technical summary The United Nations' sustainable development goals (SDGs) articulate societal aspirations for people and our planet. Many scientists have criticised the SDGs and some have suggested that a better understanding of the complex interactions between society and the environment should underpin the next global development agenda. We further this discussion through the theory of social-ecological resilience, which emphasises the ability of systems to absorb, adapt, and transform in the face of change. We determine the strengths of the current SDGs, which should form a basis for the next agenda, and identify key gaps that should be filled. Technical summary The United Nations' sustainable development goals (SDGs) are past their halfway point and the next global development agenda will soon need to be developed. While laudable, the SDGs have received strong criticism from many, and scholars have proposed that adopting complex adaptive or social-ecological system approaches would increase the effectiveness of the agenda. Here we dive deeper into these discussions to explore how the theory of social-ecological resilience could serve as a strong foundation for the next global sustainable development agenda. We identify the strengths and weaknesses of the current SDGs by determining which of the 169 targets address each of 43 factors affecting social-ecological resilience that we have compiled from the literature. The SDGs with the strongest connections to social-ecological resilience are the environment-focus goals (SDGs 2, 6, 13, 14, 15), which are also the goals consistently under-prioritised in the implementation of the current agenda. In terms of the 43 factors affecting social-ecological resilience, the SDG strengths lie in their communication, inclusive decision making, financial support, regulatory incentives, economic diversity, and transparency in governance and law. On the contrary, ecological factors of resilience are seriously lacking in the SDGs, particularly with regards to scale, cross-scale interactions, and non-stationarity. Social media summary The post-2030 agenda should build on strengths of SDGs 2, 6, 13, 14, 15, and fill gaps in scale, variability, and feedbacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy